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Abstract 

The Swarm intelligence is a real an innovative computational way 

for solving some kinds of hard problems. This way is simulated by the 

behavior of social animals and insects such as bird flocks, fish schools, 

colonies of ants and hony bees etc. 

The Particle swarm optimization (PSO) mimics the behavior of a 

swarm of  bird flocks and school of fish. The Swarm behavior is modeled 

by number of particles in multidimensional space that have two parts: a 

position and a velocity. 

Stream ciphers considered an important class of encryption 

algorithms. The Shift register sequences can be used in both cryptography 

and coding theory. There is a big wealth of theory about stream ciphers 

based on shift registers, which have been the workhorse of military 

cryptography since the beginnings of electronics. 

This thesis aims to implement cryptanalysis system on stream 

cipher cryptosystems called PSO Cryptsnslysis System (PSOCS) using 

probable word  plaintext attack, choosing three study cases, single Linear 

Feedback Shift Register (LFSR), which considered as a basic unit of 

stream cipher systems, and Linear cryptosystem and Threshold generator 

(as nonlinear cryptosystem) in the performance of PSO by find the actual 

solution of the System of Linear Equations (SLE) for any number of 

variables of the output of LFSR. 

The application of the proposed PSOSC divided into two stages, 

first, constructing SLE’s for the combined LFSR's in the genrator, and the 

second, is attacking the variables of SLE’s which they are also the initial 

key values the of LFSR's.  This thesis shows the good performance of 

PSOCS in finding the actual key of the three study cases. 

The results of this research are implemented in Delphi version 10.0 

visual programming languages exploiting the object oriented tools of this 

language. 
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Chapter 

One 



Chapter One 

Basic Mathematical concepts  

1.1 Introduction 

The growth of the Internet has made government intelligence and 

police agencies nervous. They say that widely available encryption 

software could make wiretapping more difficult; their common reaction is 

to try to restrict the strength of encryption algorithms or require that spare 

copies of the keys are available somewhere for them to seize. 

Cryptography is the study of mathematical techniques which are 

related to the aspects of information security such as confidentiality, data 

integrity, entity authentication, and data origin authentication [1]. 

This chapter introduces the basic concepts in different fields in 

mathematics, which the cryptography and cryptanalysis are needed, 

specially, in stream cipher systems. 

1.2 Number Theory 

Number theory, in mathematics, is primarily the theory of the 

properties of integers (whole numbers) such as parity, divisibility, 

primarily, additively, and multiplicatively, etc. In the next subsections 

we will investigate more detailed discussions about numbers. 

1.2.1 Primarily [2] 

Definition (1.1): A positive integer n>1 that has only two distinct factors, 

1 and n itself (when these are different), is called prime; otherwise, it is 

called composite. The first few prime numbers are: 2,3,5,7,11,13,17,…. 

Remark (1.1):  

1.  It is interesting to note that primes thin out: there are eight up through 

20, but only three between 80 and 100. 

2.  Note that 2 is the only even prime, all the rest are odd. 



1.2.2 Multiplicatively  

Theorem (1.1): [3] (the fundamental theorem of arithmetic)  

Any positive integer n>1 can be written uniquely in the following prime 

factorization form: 

n= 





k

1i
ik21

ik21 pppp                                                                    …(1.1) 

where p1<p2<…<pk are primes, and 1, 2,…, k are positive integers. 

Example (1.1) [4]: The following are prime factorization of n for 

n=1999, 2000, …, 2010. 

1999 = 1999 , 2000 = 2
4
.5

3
 , 2001 = 3.23.29 

2002 = 2.7.11.13 , 2003 = 2003 , 2004 = 2
3
.3.167 

2005 = 5.401 , 2006 = 2.17.59 , 2007 = 3
2
.223 

2008 = 2
3
.251 , 2009 = 7

2
.41 , 2010 = 2.3.5.67 

 

1.2.3 Divisibility  

Definition (1.2)[5]: Let a and b be two integers, not both zero. The 

largest divisor d s.t. d|a and d|b is called the greatest common divisor 

(gcd) of a and b, which is denoted by gcd(a,b). 

Definition (1.3)[5]: Let a and b be two integers, not both zero. d is a 

common multiple of a and b, the least common multiple (lcm) of a and b, 

is the smallest common multiple, which is denoted by lcm(a,b). 

Definition (1.4)[5]: Integers a and b are called relatively prime if 

gcd(a,b)=1. we say that integers n1,n2,…nk are relatively prime if, 

whenever ij, we have gcd(ni,nj)=1, i,j, 1i,jk. 

Theorem (1.2)[3]: Suppose a and b are two positive integers. 

If a=



k

1i
i

ip and b=



k

1i
i

ip , then 



gcd(a,b)=



k

1i
i

ip , where i=min(i,i), i, 1ik.  

lcm(a,b)=



k

1i
i

ip , where i=max(i,i), i, 1ik. 

 

Theorem (1.3)[4]: Suppose a and b are two positive integers. 

If a=



k

1i
i

ip and b=



k

1i
i

ip , then 

gcd(a,b)=



k

1i
i

ip , where i=min(i,i), i, 1ik.  

lcm(a,b)=



k

1i
i

ip , where i=max(i,i), i, 1ik. 

 

Theorem (1.4) [3]: Suppose a and b are two positive integers, then: 

                              lcm(a,b)=
)b,agcd(

b.a
. 

Example (1.2): Since the prime factorization of 240 and 560 are: 

240=2
4
.3.5 and 560=2

4
.5.7, then the: 

gcd(240,560)=2
min(4,4)

.3
min(1,0)

.5
min(1,1)

.7
min(0,1)

=2
4
.3

0
.5

1
.7

0
=80. 

lcm(240,560)= 2
max(4,4)

.3
max(1,0)

.5
max(1,1)

.7
max(0,1)

=2
4
.3

1
.5

1
.7

1
=1680. 

1.3 Arithmetic Functions [6] 

Arithmetic (or number theoretic) functions are the most fundamental 

functions in mathematics and computer science; for example, the 

computable functions studied in mathematical logic and computer science 

are actually arithmetic functions. In this section we shall study some basic 

arithmetic functions that are useful in number theory. 



Definition (1.5) [7]: A function f is a rule that assigns to each element in 

a set D (called Domain of f) one and only one element in a set B. the set 

of images called the range (R) of  f  . 

Definition(1.6)[8]: Inverse of function it’s a relation form set  

(Codomain) to set  (Domain), such that. 

 

Where  is function on a set to set ; let  the inverse of b denoted 

by  consist of these elements in which mapped onto , such that. 

. 

Definition(1.7)[9]: Linear and Non-linear Function  

algebraically: any polynomial with highest degree equal to one 

 , where  and  are constant it’s a linear function, 

Otherwise it’s a non-linear function.  

Definition (1.8): [7] A function f is called an arithmetic function or a 

number theoretic function if it assigns to each positive integer n a 

unique real or complex number f(n). Typically, an arithmetic function is a 

real-valued function whose domain is the set of positive integer.  

Example (1.3): the equation n , nN, defines an arithmetic function f 

which assigns the real number n to each positive integer. 

1.4 Prime Number 

Definition (1.9) [10]: An integer  is called a Prime Number if  greater 

than one and if the only positive dividing  are one and . 

Example (1.4):   

Definition (1.10) [11]: (The Fundamental Theorem of Arithmetic)  

any integer positive number  greater than one can be written uniquely in 

the flowing prime factorization,  



where , are prime numbers, are 

positive integer numbers. 

1.5 Modular 

 Definition (1.11) [12]: divisor  

any non-zero integer number b satisfying the property  

;  

 And divided  with no remainder then  called divisor or factor of  

and denoted by . 

Example (1.5):  are factors of . 

Definition (1.12) [13]: Modular Arithmetic 

The modular arithmetic is a system of arithmetic for integers uses a 

finite number values, where the values ―warp around‖ until reaching to a 

certain value the modulus. 

 

Definition (1.13) [14]: Greatest Common Divisor (G.C.D) 

       For any two positive integer numbers  the greatest common 

divisor (G.C.D) of them is the greatest number  that divisor of  and  

 and ) 

 

Definition (1.14) [14]: Smallest Common Multiple (L.C.M) 

       The Smallest common Multiple (L.C.M) of  and , is the smallest 

integer , That  and  

Remark (1.2): if then  are called relatively prime. 

Theorem (1.5) [13] suppose  and  are two positive integer numbers if  

       and         then  

 Where  for every  such that 

1≤ ≤  



 Where  for every  such that 

1≤ ≤  

Where  are prime numbers and are non-negative numbers. 

 

Example(1.6): ,and 

 

      and         

According to theorem (1.5) 

=
 
             

                            

                           =  

 

                   .
 

1.6 Group Theory [15, 16] 

Definition (1.15): 

1.  Z>a is the set of positive integers greater than a: 

Z>a={a+1,a+2,…}. 

2.  The set of all residue classes modulo a positive integer denoted by Zn: 

Zn={0,1,2,…,n-1}. 

 

Definition (1.16): Binary Operation 

     A binary operation * on a set A is a rule that assign to each ordered 

pair (a,b) of elements of A a unique element of A. 

Example (1.7): Ordinary addition + and multiplication • are binary 

operations on N, Z, R, or C. 



Definition (1.17): Group 

A group, denoted by G,* (or ( G,*)), or simply G, is a G≠φ of elements 

together with a binary operation *, s.t. the following axioms are satisfied: 

1. Closure: a*bG, a,bG. 

2. Associativity: (a*b)*c=a*(b*c), a,b,cG. 

3. Existence of identity: ! element eG, called the identity, s.t. 

e*a=a*e=a, aG. 

4. Existence of inverse: aG, ! Element bG, s.t. 

a*b=b*a=e. This b is denoted by a
-1

 and called the inverse of a. 

The group G,* is called commutative (abelian) group if it satisfies 

further axiom: 

5. Commutatively: a*b=b*a, a,bG. 

Example (1.8): the set Z
+
 with operation + is not group ( no identity 

element), and it's not group with operation • ( no inverse element in Z
+
).  

Definition (1.18): Additive and Multiplicative Group  

1.  If the binary operation of a group is +, then the identity of group is 0 

and the inverse of aG is –a; this said to be an additive group. 

2.  If the binary operation of a group is •, then the identity of a group is 

1 or e, this group is said to be multiplicative group. 

Definition (1.19): Finite Group 

      A group is called a finite group if it has finite number of elements; 

otherwise it is called an infinite group. 

Definition (1.20): The order of the group G, denoted by |G| (or by #(G)) 

is the number of elements of G. 



Example (1.9): the order of Z is |Z|=. 

Definition (1.21): Subgroup 

       Let aG, where G is multiplicative group. The elements a
r
, where r is 

an integer, form a subgroup of G, called the subgroup generated by a. 

Definition (1.22): Cyclic Group 

        A group G is cyclic if  aG s.t. the subgroup generated by a is the 

whole of G. 

If G is a finite cyclic group with identity element e, the set of 

elements G may be written {e,a,a
2
,…,a

n-1
}, where a

n
=e and n is the 

smallest such positive integer. 

Definition (1.23)[17]: Field 

      A field by F,, (or (F,,)) or simply F, is abelian group w.r.t. 

addition, and F-{0} is abelian w.r.t. to multiplication. 

Definition (1.24)[17]: Finite Field 

     A finite field is a field that has a finite number of elements in it; we 

call the number the order of the field. 

Theorem (1.6)[17]: Prime Power 

  a field of order q iff q is prime power (i.e. q=p
r
) with p prime and rN. 

Remark (1.3)[17]: Galois field 

A field of order q with q prime power is called Galois field and is denoted 

by GF(q) or just Fq. 

Example (1.7)[4]: The finite field F5 has elements {0,1,2,3,4} and is 

described by the table(1.1) addition and multiplication table. 

 



Table (1.1) The addition and multiplication for F5. 

 0 1 2 3 4 

 

 

0 0 1 2 3 4  1 2 3 4 

1 1 2 3 4 0 1 1 2 3 4 

2 2 3 4 0 1 2 2 4 1 3 

3 3 4 0 1 2 3 3 1 4 2 

4 4 0 1 2 3 4 4 3 2 1 

1.7 Boolean Ring and Boolean Algebra 

Definition (1.25)[18]: Let A≠φ be a set, f be a binary operation on a set A 

(f:AAA), we call the pair (A,f) as mathematical system. 

Definition (1.26) [18]: Let X be the universal set, and let A and B be two 

subsets of X, then: 

1. The operation + defined as A+b=AB. 

2. The operation  defined on the power P(X) set of X  by: 

AB=(A-B)(B-A) s.t. A-B=AB', B' is the complement set of B. 

The operation  called Exclusive-OR (XOR) (or the symmetric 

difference). 

3. The operation • defined as A•B=AB.  

Definition (1.27) [18]: Boolean Ring 

Let (R,+,•) be a ring with identity element, if the Idempotency law be 

satisfied a
2
=a, aR, then the ring called Boolean ring. 

Example (1.8): Let P(X) represents the set of all the subsets of the 

universal set X, then the ring (P(X),,•) is Boolean ring. 



Definition (1.28) [18]: In Boolean ring (B,,•), we defined: 

1. Complement: a=a1, aB. 

2. Sum (OR): a+b=aba.b a,bB. 

Definition (1.29) [18]: Boolean Algebra 

      The Boolean algebra is the mathematical system (B,,) where B≠φ, 

and the binary operations  and  defined on B as follows:  

1. The operations  and  are commutative. 

2. The operations  and  are satisfy the distribution law for each to 

other. 

3.  two identity distinct elements 0 and 1 of the operations  and  

respectively s.t. a0=a and a1=a, aB. 

Example (1.9): The system (P(X),,) is boolean algebra, X≠φ, we use 

φ=0 and X=1. If B be a set of subsets of X including φ and X which is 

closed on  and complement then (B,,) is boolean algebra too. 

Theorem (1.7)[19]: Every boolean algebra (B,,) is boolean ring 

(B,,•) when we defined the operations  and • as follows: 

1. ab=(ab')(a'b). 

2. a•b=ab. 

a,bB. 

Theorem (1.8) [19]: Every ring (B,,•) is Boolean algebra (B,,) when 

we defined  and  as follows: a,bB. 

1. ab=aba•b. 

2. ab=a•b. 



Theorem (1.9)[19]: The ring (Zp,,) is field iff p is prime number s.t. 

ab=a + b (mod p). 

ab=a•b (mod p). 

This field is Galois field and is denoted by GF(p), a,b Zp. 

1.8 Logic Circuits[19] 

In electronically logical circuits (which are subject to the Boolean 

algebra), there are small circuits called Gates which are, for example, part 

from transistors, diodes, capacitors, and etc, these gates are shown in 

figure (1.1): 

 

 

Figure (1.1) The boolean gates. 

 

(a).The gate AND: is multiplying the input variables. 

(b).The gate OR: summing the input variables. 

(c).The gate NOT: complement of the input variable. 

(d).The gate XOR: summing XOR the input variables. 

These gates are shown in the table (1-2). 

x=a.b 
a 

 

b 

 

(a) 

y=a+b 
a 

 

b 

(b) 

w=ab 

a 

 

b 

(d) 

z=a a 

 

 

(c) 



 

Table (1.2) The truth tables of the four gates. 

• 0 1 

 

+ 0 1 

 

A a 

 

 0 1 

0 0 0 0 0 1 0 1 0 0 1 

1 0 1 1 1 1 1 0 1 1 0 

 

Definition (1.30): The logical function f is called the output function 

defined f:B
n
→B, where B

n
 is a set of n input binary data, f subject to the 

Boolean algebra laws and we can apply the gates concepts on it, s.t. 

x=f•g, y=f+g, z=f, and w=fg, where f and g are Boolean functions. 

1.9 Sequences and Series [20] 

1.9.1 Sequences 

Definition (1.31): Sequence 

The sequence in the field F is a function f, whose domain is the set of 

non-negative (or could be positive) integer, s.t. f :Z→F, and its denoted 

by S= 
0nn

S . 

Definition (1.32): The Sequence S is periodic when pZ
+
 s.t. 

s0=sp,s1=sp+1,…, the minimum p is the period of S. 

If Zm={0,1,…,m-1}, where mZ
+
, then S is digital sequence. In special 

case, if m=2 then S is binary sequence, and if m=3 then S is tri sequence. 

1.9.2 Series  

Definition (1.33): An infinite series is an expression of the form: 

u1+u2+…uk+…=


1k
k

u . 



Let Sn denotes the sum of the first n terms of the series s.t. 

Sn=


n

1k
k

u , and  
1nn

S  is called the sequence of partial sums. 

S=


1k
k

u is called the sum of the series. 

Theorem(1.10): A geometric series a+ar+ar
2
+…+ar

k-1
+…(a≠0) is 

converges if |r|<1 and the sum is
r1

a


=a+ar+ar

2
+…+ar

k-1
+…, and 

diverges if |r|≥1. 

1.10 Literature Survey 

While there are have been many papers written on PSO and their 

application to various problems, there are relatively few papers that apply 

PSO to cryptanalysis. 

In 1995, Kennedy J. and Eberhart R. introduced a concept for the 

optimization of nonlinear functions using particle swarm methodology. 

The evolution of several paradigms outlined, and an implementation of 

one of the paradigms had been discussed. Kennedy and Eberhart 

proposed Benchmark testing of the paradigm which describes the 

applications including nonlinear function optimization and neural 

network training. The described relationship is between particle swarm 

optimization and both artificial life and genetic algorithms [21].     

In 1999 Eberhart R.C. and Hu X. arranged a new method for the 

analysis of human tremor using particle swarm optimization which is 

used to evolve a neural network that distinguishes between normal 

subject and those with tremor. Inputs to the neural network are 

normalized movement amplitudes obtained from an actigraph system. 



The results from this preliminary investigation are quite promising, and 

the work is continuing [22]. 

In 2002, Venter G. and Sobieszczanski J. demonstrated the 

application of Particle Swarm Optimization to a realistic 

Multidisciplinary Optimization test problem. A new contribution to 

multidisciplinary optimization is the application of a new algorithm for 

dealing with the unique challenges associated with multidisciplinary 

optimization problems [23]. 

In 2002, Parsopoulos K.  E. and Vrahatis M. N. adopted a new 

method PSO technique for the alleviation of local minima, and for 

detecting multiple minimizers are also described. Moreover, results on 

the ability of the PSO in tackling Multiobjective, Minimax and Integer 

Programming, as well as problems in noisy and continuously changing 

environments, are reported. Finally, a Composite PSO, in which the 

heuristic parameters of PSO are controlled by a Differential Evolution 

algorithm during the optimization that is described, and results for many 

well-known and widely used test functions are given [24]. 

In 2003, Rahmat-Samii Y., Gies D. , and Robinson J. are adopted a 

conceptual overview of the algorithm, keeping at all times the focus on 

implementing Particle Swarm Optimization to solve practical problems. 

In this vein, a selection of recent applications of the method to real-world 

design examples will also be presented [25]. 

On 2
nd

 February 2003, Bliss L. adopted a new method which 

extends ANN training to include topological optimization of the network, 

especially the reduction of the number of inputs to the ANN [26]. 



On 6
th
 may 2003, much work has been done by Bliss L. in the area 

of configuring ANN topology automatically using soft computing 

techniques such as GA. However, little time has been spent by researches 

on selecting the proper inputs to the ANN. NN used to predict the 

behavior of dynamical systems often have a choice of input information, 

much of which is redundant. Selecting a minimal set of inputs that 

produce acceptable behavior results in a lower cost solution. Researchers 

using trial and error methods currently do this input selection manually. 

The work shows several methods of automatically selecting a small set of 

inputs from a large candidate population. PSO is the primary network 

optimization technique used for processing ANN configuration [27]. 

In February 2004, Shi Y. surveyed the research and development 

of PSO in five categories: algorithms, topology, parameters, hybrid PSO 

algorithms, and applications. There are certainly other research works on 

PSO which are not included due to the space limitation. In general, the 

search process of a PSO algorithm should be a process consisted of both 

contraction and expansion so that it could have the ability to escape from 

local minima, and eventually find good enough solutions. A mathematical 

foundation of PSO needs to have a deep understanding of the dynamic 

process of PSO. There is also a need for a unique representation of the 

PSO topology and a need for a standard set of benchmark functions so 

that researchers can duplicate each other's work and compare their work 

with the others [28].E 

There are more literatures survey will be discussed in details 

chapter three. 

1.11 Objective of Thesis 

The objective of this thesis is to investigate and evaluate one of the 

searching methods called Particle Swarm Optimization (PSO) and how 



this algorithm can be implemented. The main goal of this thesis is to 

attack the stream cipher systems, specifically. The cryptanalysis issue 

includes attack the non-linear equations system and the output key 

sequence (which is known to the cryptanalyst) to retrieve the initial key 

values of LFSR(s) which generate this sequence. We propose a PSO 

cryptanalysis system to find the initial key of each LFSR which consists 

of  particularized for construction the mathematical representation of 

nonlinear equation systems of each cryptosystem.  

1.12 Thesis Outlines 

The solution of our problem has been covered through five 

chapters, the first three chapters are considered to provide the main 

concepts of this thesis, while the proposed system, practical work and the 

obtained results are explained in chapter four. Finally we introduced the 

conclusions and future work in the chapter five.  

Chapter Two: deals with cryptology, classical cryptosystem types 

(simple substitution cipher and simple transposition 

cipher, cryptanalysis and cryptanalytic tools for 

classical cryptosystems. And shows the importance of 

stream cipher system and its classification, then 

showing some classical and modern cryptanalysis 

methods. Lastly, we will illustrate the types of attack. 

Chapter Three: Presents the background of swarm intelligence and its 

applications, the background of PSO algorithm, 

biological collective behavior, and its applications. 

And the differences between PSO and classical methods. 

The operators and parameters of  PSO are detailed in this 

chapter. In addition, the most application fields of PSO. 



Chapter Four: covers the use of PSO algorithm as a cryptanalysis tool to 

attack such classical cryptosystems, and shows the 

experimental results for the implementation of the basic 

algorithm. We introduce how we can put the output 

results for each cryptosystem as a nonlinear equations 

system then put a new method to attack this  systems 

depending on PSO. 

Chapter Five: This chapter includes a conclusions and future work. 
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Chapter TWO 

Cryptography and Stream 

 Cipher Systems 

Introduction2.1  

Cryptography means hidden writing, the practice of using 

encryption to conceal text. A Cryptanalyst studies encryption and 

encrypted messages, with the goal of finding the hidden meanings of the 

messages. Both a cryptographer and a cryptanalyst attempt to translate 

coded material to its original form; normally a cryptographer works on 

behalf of a legitimate sender or receiver, while a cryptanalyst works on 

behalf of an unauthorized interceptor. Finally, Cryptology is the research 

into and study of encryption and decryption; it includes both 

cryptography and cryptanalysis [1]. 

This chapter introduces a description for the most important 

terminology in cryptography and some important known stream cipher 

systems which are depend on linear feedback shift register which are 

considered as a basic unit of stream cipher systems. 

 

2.2 Terminology  

Cryptography (from the Greek Kryptós, ―hidden‖ and gráphein, 

―to write‖) is the study of principles and techniques by which 

information can be concealed in ciphertexts and later revealed by 

legitimates users employing the secret key, but in which it is either 

impossible or computationally infeasible for an unauthorized person to do 

so. Cryptanalysis (from the Greek Kryptós, and analy in ―to loosen‖) is 

the science (and art) of recovering information from ciphertexts without 

knowledge of the key. Both terms are subordinate to the more general 



term Cryptology (from the Greek Kryptós, and logos, ―word‖). The 

cryptography concerned in Encryption and Decryption processes [1].  

Now we have to present some important notations: 

 Message space M: a set of strings (plaintext messages) over some 

alphabet, that needs to be encrypted. 

 Ciphertext space C: a set of strings (ciphertexts) over some 

alphabet that has been encrypted. 

 Key space K: a set of strings (keys) over some alphabet, which 

includes the encryption key ek and the decryption key dk. 

 The Encryption process (algorithm) E: Eek(M)=C. 

 The Decryption process (algorithm) D: Ddk(C)=M. 

The algorithms E and D must have the property that: 

Ddk(C)=Ddk(Eek(M))=M. 

The above situations shown in figure (2.1). 

 

 

 

 

 

2.3 Cryptosystems 

The Cryptosystem are the systems which use the encryption and 

decryption processes, these systems can be classified as in figure (2.2). 

Whenever Cryptanalysis is the science and study of methods of 

breaking ciphers. It is a system identification problem, and the goal of 

Cryptography is to build systems that are hard to identify [2]. To attack a 

cryptographic system successfully the cryptanalysis is forced to be based on 

subtle approaches, such as knowledge of at least part of the text encrypted, 

knowledge of characteristic features of the language used,..., with some 

Plaintext 
Encryption Decryption 

Ciphertext 
Original 

Plaintext 

Figure (2.1) Encryption Process. 

 



luck. However, in practice, some of this information may be inaccurate, 

imprecise, or missing, which, in turn, causes to decrease the possibility of 

attacking and increasing the time or the resources required by the analyst.  

 

 

There are essentially two different types of cryptographic systems 

(cryptosystems), these cryptosystems are described in the next two 

subsections. [3] 

 

2.3.1 Public Key Cryptographic System 

It is also called asymmetric cryptosystems. In a public key (non-

secret key) cryptosystem (see figure (2.3)), the encryption key ek and 

decryption key dk are different, that is ek≠dk. 

Cryptosystems 

Public Key 

Encryption Systems 
 

Secret Key 

Encryption 

Systems 

Modern Systems Classical Systems 

Block Cipher 

 Systems 
 

Stream 

cipher 

 Systems 

Substitution 

Systems 

Transposition 

Systems 

Figure (2.2) Cryptosystems classification 
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Figure (2.3) Modern public-key cryptosystem, ek≠dk. 
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2.3.2 Secret Key Cryptographic System 

It’s also called symmetric cryptosystems. In a conventional 

secret-key cryptosystem (see figure (2.4)), the same key (ek=dk=kK), 

called secret key, used in both encryption and decryption; we are interest 

in this type of cryptosystems. 

 

 

 

 

 

 

 

 



The sender uses an invertible transformation f defined by: 

f : M k C 

So produce the ciphertext:  

c=( Ek(m)),mM and cC. 

and transmits it over the public insecure channel to the receiver. The key 

k should also be transmitted to the legitimate receiver for decryption but 

via a secure channel since the legitimate receiver knows the key k, he can 

decrypt c by transformation f
 -1

 defined by: 

f
 -1

 : C k M 

and obtain: 

Dk(c)=Dk(Ek(m))= m, cC and mM, 

and it’s the original plaintext message.  

There are many different types of secret key cryptosystems. In what 

follows, we shall introduce some of these systems. [4] 

 

I. Stream (Bit) Ciphers 

This kind of secret key cryptosystems is our interest, so we will detail 

it in the next section. 

 

II. Monographic (Character) Ciphers 

Earlier ciphers (cryptosystems) were based on transforming each letter of 

the plaintext into a different letter to produce the ciphertext. Such ciphers 

are called character substitution or monographic ciphers, since each 

letter is shifted individually to another letter by a substitution. 

 

III. Polygraphic (Block) Ciphers 

Monographic ciphers can be made more secure by splitting the 

plaintext into groups of letters (rather than a signal letter) and then 

performing the encryption and decryption on these groups of letters. 



This block technique is called block ciphering. Block cipher is also 

called a polygraphic cipher. 

 

2.4 Linear Feedback Shift Register 

A feedback shift register is made up of two parts: a shift register and 

a feedback function (see figure (2.5)). The shift register is a sequence of 

bits, (the length of a shift register is figured in bits). Each time a bit is 

needed, all of the bits in the shift register are shifted 1 bit to the right. The 

new left-most bit is computed as a function of the other bits in the 

register. The output of the shift register is 1 bit, often the least significant 

bit. The period of a shift register is the length of the output sequence 

before it starts repeating. 

 

an an-1 …… a4 a3 a2 a1 

 

Feedback Function 

 

Cryptographers have liked stream ciphers made up of shift registers: 

They are easily implemented in digital hardware. We will only touch on 

the mathematical theory. 

Ernst Selmer, the Norwegian governments’ chief cryptographer, 

worked out the theory of shift register sequences in 1965 [5]. Solomon 

Golomb, an NSA mathematician, wrote a book with Selmers results and 

some of his own [6]. 

The simplest kind of feedback shift register is a Linear Feedback 

Shift Register (LFSR), as described in figure (2.6). The feedback 

Figure (2.5) Feedback Shift Register. 



function is simply the XOR of certain bits in the register; the list of these 

bits is called a tap sequence. Because of the simple feedback sequence, a 

large body of mathematical theory can be applied to analyzing LFSRs. 

Cryptographers like to analyze sequences to convince themselves that 

they are random enough to be secure. LFSR's are the most common type 

of shift registers used in cryptography.  
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In order for a particular LFSR to be a maximal-period LFSR, the 

polynomial formed from a tap sequence plus the constant 1 must be a 

primitive polynomial mod 2. The degree of the polynomial is the length 

of the shift register. A primitive polynomial of degree n is an irreducible 

polynomial. 

Linear feedback shift registers (LFSRs) are used in many of the 

keystream generators that have been proposed in the literature. There are 

several reasons for this [7]: 

1. LFSRs are well-suited to hardware implementation. 

2. They can produce sequences of large period. 

3. They can produce sequences with good statistical properties. 

4. Because of their structure, they can be readily analyzed using 

algebraic techniques. 

Figure (2.6) Linear Feedback Shift Register. 



A linear feedback shift register (LFSR) of length L consists of L 

stages (or delay elements) numbered 0,1,…,L−1, each capable of storing 

one bit and having one input and one output; and a clock which controls 

the movement of data. During each unit of time the following operations 

are performed: 

1. The content of stage 0 is output and forms part of the output sequence. 

2. The content of stage i is moved to stage i−1 for each i, 1iL−1. 

3. The new content of stage L−1 is the feedback bit sj which is calculated 

by adding together modulo 2 the previous contents of a fixed subset of 

stages 0,1,…,L−1. 

Every output sequence (i.e., for all possible initial states) of an LFSR 

L,C(D) is periodic if and only if the connection polynomial C(D) has 

degree L. 

If C(D)Z2[D] is a primitive polynomial of degree L, then L,C(D) 

is called a maximum-length LFSR. The output of a maximum-length 

LFSR with non-zero initial state is called an m-sequence. 

The basic approach to designing a keystream generator using LFSR is 

simple. First you take one or more LFSR, generally of different lengths 

and with different feedback polynomials. (If the lengths are all relatively 

prime and the feedback polynomials are all primitive, the whole generator 

is maximal length). The key is the initial state of the LFSR. Every time 

you want a bit, shift the LFSR once (this is sometimes called clocking). 

The output bit is a function, preferably a nonlinear function, of some of 

the bits of the LFSR. This function is called the combining function, and 

the whole generator is called a combination generator. 

Three general methodologies for destroying the linearity properties of 

LFSRs are discussed in this section [7]: 

1. Using a nonlinear combining function on the outputs of several LFSRs. 



2. Using a nonlinear filtering function on the contents of a single LFSR. 

3. Using the output of one (or more) LFSRs to control the clock of one 

(or more) other LFSRs 

 

2.5 Stream Cipher Systems 

In stream ciphers, the message units are bits, and the key is usual 

produced by a random bit generator (see figure (2.7)). The plaintext is 

encrypted on a bit-by-bit basis. 

 

The key is fed into random bit generator to create a long sequence of 

binary signals. This ―key-stream‖ k is then mixed with plaintext m, 

usually by a bit wise XOR (Exclusive-OR modulo 2 addition) to produce 

the ciphertext stream, using the same random bit generator and seed. 

Stream ciphers are an important class of encryption algorithms. They 

encrypt individual characters (usually binary digits) of a plaintext 

message one at a time, using an encryption transformation which varies 

with time. By contrast, block ciphers tend to simultaneously encrypt 

groups of characters of a plaintext message using a fixed encryption 

transformation. Stream ciphers are generally faster than block ciphers in 

hardware, and have less complex hardware circuitry. They are also more 

appropriate, and in some cases mandatory (e.g., in some 
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Figure (2.7) A stream (Bit) cipher. 



telecommunications applications), when buffering is limited or when 

characters must be individually processed as they are received. Because 

they have limited or no error propagation, stream ciphers may also be 

advantageous in situations where transmission errors are highly probable. 

There is a vast body of theoretical knowledge on stream ciphers, and 

various design principles for stream ciphers have been proposed and 

extensively analyzed. However, there are relatively few fully-specified 

stream cipher algorithms in the open literature. This unfortunate state of 

affairs can partially be explained by the fact that most stream ciphers used 

in practice tend to be proprietary and confidential. By contrast, numerous 

concrete block cipher proposals have been published, some of which have 

been standardized or placed in the public domain. Nevertheless, because of 

their significant advantages, stream ciphers are widely used today, and one 

can expect increasingly more concrete proposals in the coming years.[8] 

 

2.6 Combination Generator 

One approach is to use n LFSRs in parallel; their outputs combined using 

an n-input binary Boolean function or combining function (CF). Figure 

(2.8) shows the design of n-LFSR’s generator with combining function.[9] 

Because LFSRs are inherently linear, one technique for removing the 

linearity is to feed the outputs of several parallel LFSRs into a non-linear 

Boolean function to form a combination generator. Various properties of 

such a combining function are critical for ensuring the security of the resultant 

scheme, for example, in order to avoid correlation attacks.[10] 

Since a well-designed system should be secure against known 

plaintext attacks, an LFSR should never be used by itself as a keystream 

generator. Nevertheless, LFSRs are desirable because of their very low 

implementation costs.[11] 



For essentially all possible secret keys, the output sequence of an 

LFSR based keystream generator should have the following properties: 

1. large period. 

2. large linear complexity. 

3. good statistical properties. 

It is emphasized that these properties are only necessary conditions 

for a keystream generator to be considered cryptographically secure. 

Since mathematical proofs of security of such generators are not known, 

such generators can only be deemed computationally secure after 

having withstood sufficient public scrutiny. [7]  

The LFSRs in an LFSR-based keystream generator may have known 

or secret connection polynomials. For known connections, the secret key 

generally consists of the initial contents of the component LFSRs. For 

secret connections, the secret key for the keystream generator generally 

consists of both the initial contents and the connections. 

 

2.7 Examples of Known Generators 

Some examples of known keystream generators are introduced. 

2.7.1 Linear Generator [12] 
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LFSRn 
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Figure (2.8) n-LFSR’s Generator with Combining Function 

 



The Linear generator, illustrated in figure (2.9), is defined by n-

maximum-length LFSRs whose lengths r1, r2,…, rn, where nZ
+

 are 

pair wise relatively prime, with XOR combining function: 

F(x1,x2,..,xn) = x1x2…xn      … (2.1) 

This generator considered weak, despite of his good randomness, 

because of his weak linear complexity. 

 

2.7.2 Product Generator [12] 

The Product generator, illustrated in figure (2.10), is defined by 

n-maximum-length LFSRs whose lengths r1, r2,…, rn, where nZ
+

 are 

pair wise relatively prime, with AND combining function: 

F(x1,x2,..,xn) = x1x2…xn =


n

1i

ix      … (2.2) 

This generator considered weak, despite of his good linear complexity, 

because of his weak randomness. 
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Figure (2.9) n-Linear Generator. 

 



 

 

2.7.3 Threshold Generator [13] 

This generator as usual using combining function called Majority 

function which is balance and symmetric (which expect that this 

generator will produces pseudo random generator). This generator 

illustrated in figure (2.11) tries to get around the security problems by 

using a variable number of LFSR’s. The theory is that if you use a lot of 

LFSRs, it’s harder to break the cipher. 

 

Take the output of a large number of LFSRs (use an odd number of 

them). Make sure the lengths of all the LFSRs are relatively prime and all 

the feedback polynomials are primitive: maximize the period. If more 
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Figure (2.10) n-Product Generator. 

 

Figure (2.11) Threshold generator 



than half the output bits are 1, then the output of the generator is 1. If 

more than half the output bits are 0, then the output of the generator is 0. 

With three LFSRs, the output generator can be written as: 

The Threshold generator using the non-linear combining function s.t: 

F3(x1,x2,x3)=x1x2 x1x3 x2x3. 

From the combing function of this generator, we expect that it has 

a larger linear complexity (LC): [12] 

LC(S) = r1r2 + r1r3 + r2r3 

where r1, r2, and r3 are the lengths of the first, second, and third LFSRs. 

2.8 Cryptanalysis  

Cryptanalysis plays an essential role in the design of ciphers. A 

good cipher should be designed by taking into account all the known 

cryptanalysis techniques and the designer's insight into unknown attacks. 

For example, DES would not have been designed in the same way if the 

differential attack had not been invented at that time, and AES would not 

give adequate security margin if the square attack had not been developed 

at that time. In the following, we illustrate some general attacks on stream 

ciphers, followed by the dedicated attacks on LFSR based stream ciphers. 

The countermeasure against these attacks will be discussed.[14] 

Unlike designing a cipher system, breaking a cipher system 

sometimes highly depends on guess and luck. Whatever method of 

cryptanalysis is used, the analyst must always expend some amount of 

time and resources (defined as work factor) to reach his goal. By 

increasing available resources, the time required to attack the cipher 

successfully can often be reduced. 



Consequently, there is a relationship between cost and time for any 

given cryptanalytic attack against a cipher. Also, there is a relationship 

established between the value, of the information obtained by breaking a 

cipher, and time. These two relationships can be used to determine the 

practical secrecy of the cipher. Usually, cryptanalysis involves high-speed 

computers, and complex, sophisticated computer programs. This 

includes: first, computer processors, which may include special purpose 

hardware to execute the logical and arithmetic operations needed to 

obtain the solution, second, computer storage for the analysis programs 

and its data, and third human resources to devise and write analysis 

programs, gather data, and oversee the analysis. 

The basic concepts of cryptanalysis were developed as a branch of 

applied mathematics; the cryptanalysis uses the following tools: [15] 

1. Probability theory and statistics. 

2. Linear algebra. 

3. Abstract algebra (group theory). 

4. Complexity theory. 

 

2.9 Attacking of Stream Cipher Methods 

The attacking methods of stream cipher could be classified as 

displayed in Figure (2.12). 



 

Figure (2.12) Attacking methods of Stream Cipher. 

The classification is based on the information processing 

approaches and the tools that are utilized by the cryptanalysis. From 

figure (2.12), clearly the classification has two major parts: classical 

methods, and modern methods. The classical methods include the most 

efficient methods used for attacking the stream cipher, but they are not 

the only methods in this area; they are: matrix method, Massey algorithm, 

and correlation methods (including fast correlation). These methods 

usually may use some or all cryptanalysis requirements and tools given in 

next sections. However, the modern methods depend on different 

approaches for information processing, namely biological like processing. 

We classify them as modern methods since they depend on new tools, 

which are: 

1. Genetic Algorithms. [16] 

2. Neural Networks. [17] 

These new tools can greatly facilitate cryptanalysis, as we shall 

explain in this chapter. In fact, the variety of new technologies increases 

the possibilities of attack. So that, each major advance in information 

technology must change our ideas about data security [18]. The 
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requirements summed up by the phrase "data security" do not stay the 

same; they change rapidly as the technology changes. One of the reasons 

for the speed of development in cryptography is, of course, the presence 

of cryptanalyst. [19] 

 

2.9.1 Classical Cryptanalysis Methods 

Although there is a considerable literature on the design of 

cryptography system,   relatively   little   public   domain    information 

exists on techniques for cryptanalysis. In this section we present an 

overview of the most efficient methods used to attack stream cipher 

(linear and non-linear type): 

I. Matrix Method 

Meyer et al [20,21], have demonstrated a method of breaking an ―N-

stage‖ LFSR given (2N) consecutive bits of known plaintext. The basic 

method is to set up the matrix equation: K = MC 
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where 

M : is the matrix of successive shifts of the first n bits of plaintext. 

C : is the unknown matrix of switch states. 

K. : is the key matrix. 

Thus the switch values can be obtained by inverting M and solving: 

C = M
-1

 K 



Therefore, the entire key will be known completely. Although 

finding the inverse of matrix is not trivial (the time taken to find the 

inverse matrix over GF(2) is proportional to O(N
3
), it is a straightforward 

process. But this method is weak, since if less than 2N consecutive bits 

are known this may not be enough to determine the entire sequence. 

Beker and Piper [19], showed two methods of breaking an ―N-

stage‖ LFSR given (2N) bits of the known plaintext sequence where the 

bits are not necessarily consecutive. These methods are based on trying 

every possibility for filling unknown entries in the sequence, and for each 

one they merely use the techniques of the matrix equation, so that, they 

involve a mixture of guessing and solving simultaneous equations. The 

choice between these two methods is usually made by seeing which will 

require fewer trials. 

 

II. Berlckamp-Massey Shift Register Synthesis Algorithm 

The iterative algorithm introduced by BerleKamp [22] for 

decoding Bose-Chaudhuri-Hocquenghem (BCH) codes, provides efficient 

solution to the problem of synthesizing the shortest linear feedback shift 

register capable of generating a finite sequence of bits. The algorithm 

leads to the polynomial of smallest possible degree (N) as providing (2N) 

bits from shift register of length (N). [23] 

 

III. Correlation and Fast Correlation Methods 

Siegenthaler [24], in 1985, demonstrated a method that the LFSRi 

part of the key can be found independently of the other LFSRs parts, by 

using the ―divide and conquer‖ technique. This method showed that the 

number of trials to find the key can be reduced significantly in those 

cases where a correlation exists between the output of the running key 

generator employed in a stream cipher, and LFSRi sequence with 



correlation probability P (up to 0.75). These generators have been broken 

for LFSR lengths (N < 50). 

Meier and Staffelbach [25], in 1988, developed two algorithms (A 

and B), which are much faster than the above attack and are demonstrated 

to be successful against shift registers of considerable length N ( N>>50), 

provided that the number t of feedback taps is small (t< 10 if P ≤ 0.75). 

Both A and B algorithms are developed by using the statistical 

model of Siegenthaler. On the other hand, for correlation probabilities 

P<0.75 the attacks are proven to be infeasible against long LFSRs if they 

have a greater number of taps (roughly N  100 and t  10). 

 

2.9.2 Modern Cryptanalysis Methods 

The modern methods of cryptanalysis are based on new and 

different approaches to minimize the time and the cost of attacking. These 

methods, as displayed in figure (3.10), are directed to utilize genetic 

algorithms and neural network concepts. 

I. Genetic Algorithms Methods 

Genetic Algorithms are search algorithms based on the mechanics 

of natural selection and natural genetics. They use concepts drawn from 

the theory of evolution to "breed" progressively better solutions to 

problems with very large solution spaces [26]. With their ability to 

efficiently search huge solution spaces, genetic algorithms would seem a 

natural candidate for use in cryptanalysis. [27] 

Spillman, et al showed the use of genetic algorithms in the 

cryptanalysis of simple substitution ciphers. [28] 

Spillman and Rechard, used a new method to attack knapsack 

cipher using genetic algorithms to decrease the time for breaking. [29] 



Matthews, demonstrated the use of genetic algorithms to break 

classical transposition ciphers by finding the transposition sequence used. 

However, there are a number of cryptographic algorithms that 

cannot be attacked using genetic algorithms, a large number of 

cryptographic algorithms, including those underpinning many rotor-based 

systems (for example stream cipher systems), appear vulnerable to attack 

by genetic algorithms. [27] 

II. Neural Networks Method 

The general interest in the neural networks arises from their 

fascinating properties which enable them to exceed the limitations of 

traditional information processing. 

Although it seems that neural network is a valuable tool for use in 

cryptanalysis, neural network is not a panacea. Therefore an important 

question must be answered: Does cryptanalysis make a suitable problem 

to be solved by Neural Networks? To answer, we must know the 

characteristics that must be exhibited by the problem to be suitable for 

solution by neural network. They are: [30] 

1.  The rule used in solving the problem may be unknown, or very 

difficult to explain or formalize. 

2.   The problem makes use of noisy, or incomplete data. 

3.   The problem may evolve.  

4.   The problem needs very high speed processing. 

5.   There may be no current technical solutions. 

 

2.10 Adversarial Models [31] 

The capabilities of an adversary in terms of operations he is able or 

allowed to execute, is another important factor during a cryptanalytic 

attack. These conditions are commonly summarized in adversarial models 



and are categorized by the type of data and by the type of access an 

adversary requires to successfully mount a given attack. The type of data 

differentiates between inputs and outputs of a cryptosystem such as secret 

keys, plaintexts, and ciphertexts, and the type of access differentiates 

between reading, writing and adaptive writing access, which are denoted 

as known values, chosen values and adaptively chosen values, 

respectively. An overview on the main adversarial models in 

conventional cryptanalysis is given below: 

 

2.10.1  Ciphertext-only Attacks [31] 

The adversary knows only the ciphertext and has no access to the 

plaintext. A cryptographic primitive vulnerable to such kind of attacks is 

considered exceptionally weak, since it is possible to distinguish it from a 

random permutation by analysing only ciphertexts. 

 

2.10.2  Known-plaintext Attacks [32] 

The adversary has reading access to plain- and corresponding 

ciphertexts processed by the cipher. A representative of this category is, 

for example, linear cryptanalysis. 

 

2.10.3  Chosen-plaintext Attacks [33] 

These are similar to known-plaintext attacks, with the difference that 

an adversary is allowed to choose the concrete plaintexts to be encrypted 

prior to the attack. A well-known attack type of this category is 

differential cryptanalysis. 

2.10.4  Chosen-ciphertext Attacks [34] 

The adversary can choose ciphertexts to be decrypted by the cipher 

before the attack starts and has reading access to the resulting plaintexts. 

 



2.10.5  Adaptively Chosen-plaintext Attacks [34] 

The adversary can select plaintexts to be encrypted during the attack 

and is not forced to choose them before the attack starts as in the case of 

the chosen plaintext scenario. The attacker also has access to the resulting 

ciphertexts. 

2.10.6 Adaptively Chosen-ciphertext Attacks [34] 

The adversary can select ciphertexts to be decrypted during the attack and 

is not forced to choose them before the attack starts as in the case of the 

chosen ciphertext scenario. The attacker also has access to the resulting 

plaintexts. 

2.10.7 Related-key Attacks [35] 

The adversary can encrypt plaintexts and decrypt ciphertexts with the 

attacked key and with keys related to the latter, which, for example, differ 

only at certain bit positions. 

However, at the same time collecting data of a given type becomes 

more and more demanding the further we go down that list. The above 

categorization also presents an indication on the practicability of the 

attacks. The above models also form the basis for implementation attacks, 

however, an attacker is assumed to have additional capabilities.  

2.11 Types of Attacks [36] 

In this section we will present the types of attacks, we also explain 

and discuss what is the use of the attack. 

It is important to understand that all the attacks have one purpose. 

The purpose is to discover the key used in the process of ciphering and 

deciphering. Each attack has a method to try to discover the key that was 

used, we will give some examples of the application of the attack. 

 

 



2.11.1 Exhaustive Search Attack [37] 

The exhaustive search attack is also called brute force. The method 

of this attack is to search through all possible states, checking for a match 

between the resulting and the observed keystream. 

Fortunately, Babbage in 1995 improved the exhaustive search 

attack in stream ciphers. He defined two attacks in this area. 

In the first attack, the attacker first procuces a list of n-bit subsequences, 

sorted in lexographic (or numberic) order. Then the attacker select a 

random candidate state in this list and check, if the selected state 

produces the output of cipher, then the attacker found the initial state else 

he continus try to find the initial state. 

The second attack was defined by Babbage as: 

― Let V be a vector space of dimension n over GF(2), with each possible 

KG(Keystream Generator) state an element of V. The initial state, which 

we wish to determine, is s0, and the state transition function is linear, and 

so can be represented by an nxn matrix A, so that si =s0Ai. The output 

function h : V →GF(2), so that the ith keystream bit ki is equal to h(si).‖ 

2.11.2 Algebraic Attack [38] 

The algebraic attack is used in stream ciphers based in LFSRs. This 

attack try to find the initial state given some keystream bits. 

The algebraic attacks has two steps. In the first step, the attack tries to find 

a system of equations in the bits of the secret key K and the output bits Zt. 

If it has enough low degree equations and known key bits stream, then the 

secret key K can be recovered by solving this system of equations in a 

second step. This system could be solved using Groebner bases. 

2.11.3 Correlation Attack [39] 

The correlation attack was proposed by Siegenthaler in 1985. An 

important work in this area was elaborated by Meier and Staffelbach. 



After them, Mihaljevi and Goli was one of the promising work. Other 

important work is from Anderson, he started the search for the optimum 

correlation attack. They opened the world of cryptanalysis to correlation 

attack. The correlation attack is defined as: 

―The correlation attack exploits the existence of a statistical dependence 

between the keystream and the output of a single constituent LFSR.‖  

2.11.4 Fault Attack [40] 

The fault attack is a powerful cryptanalytic tool. It is widely 

applied in cryptosystems which are not vulnerable to direct attack. It is 

easy. The idea of Correlation attack involving several constituent LFSRs 

attacks in block ciphers, but the first application of this attack in stream 

cipher was developed by Hoch and Shamir. 

In this attack, the attacker can apply some bit flipping faults to either 

the RAM or the internal register of the cryptographic device. However, he 

had only a partial control over their number, location and timing. This 

model tries to reflect a situation in which the attacker has the possession of 

the physical device, and the faults are transient rather than permanent. 

A good work in this area was developed by Barenghi et al, they 

talk about this technique and where it can be applied. In their work has 

examples using stream ciphers and block ciphers. 

2.11.5 Chosen-IV Attack [41] 

In the Chosen-IV attack one of the relevant work in this area is 

from Joux and Muller. To understand more about this attack we should 

bring the definition from Joux and Muller work: 

―In general, a stream cipher produces a pseudo random sequence 

PRNG(K, IV) from a secret key K and an initialization vector IV. Then, 

the ciphertext C is computed from the plaintext P by: 

C = PRNG(K, IV)  P . 



The main idea behind the use of initialization vectors is to generate 

different pseudorandom sequences without necessarily changing the 

secret key, since it is totally insecure to use twice the same sequence.‖ 

Then, this attack exploits the weaknesses in the key scheduling algorithm 

of the stream cipher. The attack tried to extract from the memory, the 

initial state of the LFSR. Like the algebraic attack. 

2.11.6 Slide Attack  [42] 

The first time that the slide attack appeared in the literature was 

with Biryukov and Wagner. They used the attack in TREYFER, WAKE-

ROFB and others block ciphers. In 2000 they improved the slide attack 

and used in other block ciphers. More recently slide attacks have been 

applied to other stream ciphers, such as Trivium with Priemuth-Schmid 

and Biryukov.  

The main idea of the attack is defined by Biryukov and Wagner 

like: ―The idea is to slide one copy of the encryption process against 

another copy of the encryption process, so that the two processes are one 

round out of phase.‖  

2.11.7 Cube Attack [43] 

The cube attack is relative new. It has been introduced by Dinur 

and Shamir in 2009. 

―The attack exploits the existence of low degree polynomial 

representation of a single output bit (as a function of the key and plaintext 

bits) in order to recover the secret key. In order to derive the secret key, 

the attacker sums this bit over all possible values of a subset of the 

plaintext bits. The summations are used in order to derive linear equations 

in the key bits which can be efficiently solved‖. This attack can be 

applied in almost any cryptosystem.  

 



2.11.8 Time-Memory Trade-off Attack  [44,45] 

Biryukov and Shamir extended this attack for stream ciphers. The 

Time/Memory/Data Tradeoff Attack has two phases: 

―During the preprocessing phase (which can take a very long time) the 

attacker explores the general structure of the cryptosystem, and 

summarizes his findings in large tables (which are not tied to particular 

keys). During the realtime phase, the attacker is given actual data 

produced from a particular unknown key, and his goal is to use the 

precomputed tables in order to find the key as quickly as possible.‖ In any 

time-memory tradeoff attack there are five key parameters: 

N: represents the size of the search space. 

P: represents the time required by the preprocessing phase of the attack. 

M: represents the amount of  RAM (hard disks or DVDs) available to the attacker. 

T: represents the time required by the realtime phase of the attack. 

D: represents the amount of realtime data available to the attacker. 

Verdult et al recovered the key from Hitag2 stream cipher in 360 seconds. 

The importance of the Hitag2 is primarily used in RFID transponder 

systems manufactured by Philips/NXP, and used by many car 

manufacturers for unlocking car doors remotely. 

2.11.9 Guess and Determine Attack  [46] 

According with Ahmadi and Eghlidos  the Guess and Determine 

Attack is defined as: 

― In GD attacks, the attacker first guesses (the values of) a set of state 

elements of the cryptosystem, called a basis; hence, the name. The basis 

can correspond to different elements of different states (multiple times). 

Next, she determines the remaining state elements and running key 

sequence, and compares the resulting key sequence with the observed key 

sequence. If these two sequences are equal, then the guessed values are 



true and the cryptosystem has been broken, otherwise the attacker should 

repeat the above scenario with other guessed values‖ . [47] 

Other application of this attack was proposed by Sha and Mahalanobis  

They used the GD attack on the A5/1 Stream cipher. Using the GD attack 

they recovered the key in a time complexity of 248:5, wich is much less 

than the bruteforce attack with a complexity of 264.  

In the moment, Dunkelman and Keller made a cryptanalysis of the stream 

cipher LEX and in this cryptanalysis they used the GD attack. He started 

the GD attacks on LFSRs for stream ciphers.[48]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Chapter 

Three 



Chapter Three 

Particle Swarm Optimization 

3.1 Introduction 

The social behavior of animals, and in some cases of humans, is 

governed by similar rules. However, human social behavior is more 

complex than a flock’s movement. Besides physical motion, humans 

adjust their beliefs, moving, thus, in a belief space. Although two persons 

cannot occupy the same space of their physical environment, they can 

have the same beliefs, occupying the same position in the belief space, 

without collision [38]. 

PSO was originally developed by a social-psychologist (James 

Kennedy) and an electrical engineer (Russell Eberhart) in 1995 and 

emerged from earlier experiments with algorithms that modeled the 

"flocking behavior" seen in many species of birds. Where birds are 

attracted to a roosting area in simulations they would begin by flying 

around with no particular destination and in spontaneously formed flocks 

until one of the birds flew over the roosting area [41]. 

PSO has been an increasingly hot topic in the area of 

computational intelligence. PSO is yet another optimization algorithm 

that falls under the soft computing umbrella that covers genetic and 

evolutionary computing algorithms as well. As such, it lends itself as 

being applicable to a wide variety of optimization problems.  

 

3.2 Simulation Social Behavior [24] 

A number of scientists have created computer simulations of various 

interpretations of the movement of organisms in a bird flock or fish 

school. Notably and et al presented simulations of bird flocking.  



Reynolds was intrigued by the aesthetics of bird flocking 

choreography, and Heppner, a zoologist, was interested in discovering the 

underlying rules that enabled large numbers of birds to flock 

synchronously, often changing direction suddenly, scattering and 

regrouping, etc. Both of these scientists had the insight that local 

processes, such as those modeled by cellular automata, might underlie the 

unpredictable group dynamics of bird social behavior. Both models relied 

heavily on manipulation of inter-individual distances; that is, the 

synchrony of flocking behavior was thought to be a function of birds' 

efforts to maintain an optimum distance between themselves and their 

neighbors. It does not seem a too-large leap of logic to suppose that some 

same rules underlie animal social behavior, including herds, schools, and 

flocks, and that of humans. As sociobiologist ―E. O. Wilson‖ has written, 

in reference to fish schooling, ―In theory at least, individual members of 

the school can profit from the discoveries and previous experience of all 

other members of the school during the search for food. This advantage 

can become decisive, outweighing the disadvantages of competition for 

food items, whenever the resource is unpredictably distributed in 

patches‖. 

 

3.3 Genetic Algorithms [34] 

Genetic Algorithms are search algorithms based on the mechanics of natural 

selection and natural genetics. They combine survival of the fittest among string 

structures with a structured yet randomized information exchange to form a search 

algorithm with some of the innovative flair of human search. In every generation, a 

new set of artificial creatures (strings) is created using bits and pieces of the fittest of 

the old; an occasional new part is tried for good measure. While randomized, Genetic 

Algorithms are no simple random walk. They efficiently exploit historical information 

to speculate on new search point with expected improved performance. 



GAs attempt to identify optimal solution by applying the techniques of natural 

selection to a population of solutions, the solutions are evaluated, the bad solutions 

are killed, and the remaining solutions are recombined (Mate) to form a new 

generation of solution. 

The general principle is that of Darwinism the good traits will 

survive overtime as they are less likely to be on solutions that are killed  

a generation. Over a number generation in an overall increase in the 

quality of solution in the population. 

Thus, a GA is an iterative procedure, which maintains a constant 

size population of candidate solution. During each iteration step 

(Generation) the structures in the current population are evaluated, and, 

on the basic of those evaluations, a new population of candidate solutions 

formed. 

 

3.3.1 The Basic Cycle of GA 

The basic GA cycle based on the three processes (selection, mating and 

mutation) as shown in figure (3.1) [51]. 

 

An abstract view of the GA is: 

Generation=0; 

Initialize G(P); {G=Generation ; P=Population} 

 
Old Population New Population 

Selection Mutation 

Mating 

Crossover 

Evaluation 

 

 

Figure (3.1) The Basic Cycle of GA  



Evaluate G(P); 

While (GA has not converged or terminated) 

Generation = Generation + 1; 

Select G(P) from G(P-1); 

Crossover G(P); 

Mutate G(P); 

Evaluate G(P); 

End (While) 

Terminate the GA. [54] 

The GA main steps are as follows: 

1. The first step is the selection process, which determines which 

string in the current generation will be used to create the next 

generation. By using move in the most promising direction in the 

overall search. 

2. The second step is the mating process that determines the actual 

form of the string in the next generation [54]. At this point, two of 

the selected parents are paired. If the length of the each string is r, 

then a random number between l and r is selected, says, the mating 

process is one swapping bits s+l to r of the first parent with bits s+1 

to r of the second parent. In this way two new strings are created. 

3. The final step is one of mutation. A fixed small mutation 

probability is set at the start of the algorithm. Bits in all the new 

string are then subject to change based on this mutation probability. 

These three steps are repeated to create each new generation It 

continues in this fashion until some stopping condition is reached such as 

a maximum number of generation or a specified fitness value (threshold). 

[16] 



The GA is usually stopped when a given termination condition is 

met. Some common termination conditions are: 

1. A pre-determined number of generations have passed. 

2. A satisfactory solution has been found. 

3. No improvement in solution quality has taken place for a certain 

number of generations. 

The different termination conditions are possible since a GA is not 

guaranteed to converge to a solution. [54]  

3.4 Swarms and Particles [24] 

It became obvious during the simplification of the paradigm that the 

behavior of the population of agents is now more like a swarm than a 

flock. The swarm has a basis in the literature. Millonas, developed his 

models for applications in ―ALife‖, and articulated five basic principles 

of swarm intelligence, these principles are: 

1. Proximity principle: the population should be able to carry out a 

simple space    and time computations. 

2. Quality principle: the population should be able to respond to 

quality factors in the environment.  

3. Principle of diverse response: the population should not commit 

its activities along excessively narrow channels.  

4. Principle of stability: the population should not change its mode 

of behavior every time the environment changes.  

5. Principle of adaptability: the population must be able to change 

the behavior mode when it is worth the computational price. 

Note that principles four and five above are the opposite sides of the 

same coin. The particle swarm optimization concept and paradigm 



presented in adhere to all five principles. Basic to the paradigm are n-

dimensional space calculations carried out over series of time steps.  

The population members are mass-less and volume-less, and thus 

could be called "points," it is felt that velocities and accelerations are more 

appropriately applied to particles, even if each is defined to have arbitrarily 

small mass and volume. Further, Reeves discusses particle systems consisting 

of clouds of primitive particles as models of diffuse objects such as clouds, 

fire and smoke. 
 

 

3.5 Swarm Intelligence (SI) [7] 

In the last two decades, the computational researchers have been 

increasingly interested to the natural sciences, and especially biology, as 

sources of modeling paradigms.  

Many research areas are massively influenced by the behavior of 

various biological entities and phenomena. It gave birth to most of 

population-based metaheuristics such as Evolutionary Algorithms (EAs), 

particle swarm optimization, and BA etc. 

SI is a modern AI discipline that is concerned with the design of multi 

agent systems with applications, e.g. in optimization and robotics. The design 

paradigm for these systems is fundamentally different from many traditional 

approaches. 

Instead of the sophisticated controller that governs the global 

behavior of the system, the SI principle is based on many unsophisticated 

entities that cooperate in order to exhibit a desired behavior. Inspiration 

for the design is taken from the collective behavior of social insects such 

as ants, termites, bees and wasps, as well as from the behavior of other 

animal societies such as flocks of birds or schools of fish. Colonies of 

social insects have mesmerized researchers for many years. 



However, the principles that govern their behavior remained unknown 

for a long time. Even though the single members of these societies are 

unsophisticated individuals, they are able to achieve complex tasks in 

cooperation. 

Optimization techniques inspired by SI have become increasingly 

popular during the last decade. They are characterized by a decentralized way 

of working that mimics the behavior of swarms of social insects. The 

advantage of these approaches over traditional techniques is their robustness 

and flexibility.  

These properties make SI a successful design paradigm for 

algorithm that deals with increasingly complex problems concerned with 

collective behavior in self-organized. 

Bonabeau has defined the swarm intelligence as “any attempt to 

design algorithms or distributed problem-solving devices inspired by the 

collective behavior of social insect colonies and other animal societies‖ 

 

3.5.1 Concepts of Swarm Intelligence [23] 

Two fundamental concepts, self-organization and division of labor, 

are necessary and sufficient properties to obtain swarm intelligent 

behavior such as distributed problem solving systems that self-organize 

and adapt to the given environment these are:- 

1. Self-organization can be defined as a set of dynamical mechanisms, 

which result in structures at the global level of a system by means of 

interactions among its low-level components. These mechanisms 

establish basic rules for the interactions between the components of the 

system. The rules ensure that the interactions are executed on the basis of 

purely local information without any relation to the global pattern. 

Bonabeau et al. [6] have characterized four basic properties on which 



self-organization rely: Positive feedback, negative feedback, fluctuations 

and multiple interactions. 

I) Positive feedback is a simple behavioral ―rules of thumb‖ that 

promotes the creation of convenient structures. Recruitment and 

reinforcement such as trail laying and following in some ant 

species or dances in bees can be shown as the examples of positive 

feedback. 

II) Negative feedback counterbalances positive feedback and helps to 

stabilize the collective pattern. In order to avoid the saturation 

which might occur in terms of available foragers, food source 

exhaustion, crowding or competition at the food sources, a 

negative feedback mechanism is needed. 

III) Fluctuations such as random walks, errors, random task switching 

among swarm individuals are vital for creativity and innovation. 

Randomness is often crucial for emergent structures since it 

enables the discovery of new solutions. 

IV) Self-Organization requires a minimal degree of mutuality to 

learned 

individuals, enabling them to make use of the results from their 

own activities as well as others. 

2. Inside a swarm, there are different tasks, which are performed 

simultaneously by specialized individuals. This kind of phenomenon 

is called division of  labour. Simultaneous task performance by 

cooperating specialized individuals is believed to be more efficient 

than the sequential task performance by unspecialized individuals. 

Division of labour also enables the swarm to respond to changed 

conditions in the search space. 

Two fundamental concepts for the collective performance of a 

swarm presented above, self-organization and division of labour are 



necessary and sufficient properties to obtain swarm intelligent 

behaviour such as distributed problem-solving systems that self-

organize and adapt to the given environment. 

 

3.5.2 Ant Colony Optimization [37] 

ACO is a class of optimization algorithms modeled on the actions of 

an ant colony. ACO methods are useful in problems that need to find paths 

to goals. 

Artificial 'ants'—simulation agents—locate optimal solutions by 

moving through a parameter space representing all possible solutions. 

Natural ants lay down pheromones directing each other to resources while 

exploring their environment. The simulated 'ants' similarly record their 

positions and the quality of their solutions, so that in later simulation 

iterations more ants locate better solutions. 

 

3.5.3 Bee Algorithm Optimization [58] 

The Bees Algorithm (BA) is a population-based search algorithm, 

first developed in 2005 by Pham DT etc. and Karaboga independently. 

The algorithm mimics the food foraging behavior of swarms of honey 

bees. In its basic version, the algorithm performs a kind of neighborhood 

search combined with random search and can be used for optimization 

problems.  

 

3.5.4 Particle Swarm Optimization [37] 

PSO is an optimization algorithm for dealing with problems in which 

a best solution can be represented as a point or surface in an n-dimensional 

space. 

Hypotheses are plotted in this space and seeded with an initial 

velocity, as well as a communication channel between the particles. 



Particles then move through the solution space, and are evaluated 

according to some fitness criterion after each time step. 

Over the time, particles are accelerated towards those particles 

within their communication grouping which have better fitness values. 

The main advantage of such an approach over other global minimization 

strategies such as simulated annealing is that the large numbers of 

members that make up the particle swarm make the technique 

impressively resilient to the problem of local minima. 
 

3.6 PSO Topology [24]  

The common uses of PSOs are either global version or local 

version of PSO. In the global version of  PSO, each particle flies through 

the search space with a velocity that is dynamically adjusted according to 

the particles of personal best performance achieved so far and the best 

performance achieved so far by all the particles. While in the local 

version of PSO, each particle’s velocity is adjusted according to its 

personal best and the best performance achieved as far within its 

neighborhood. The neighborhood of each particle is generally defined as 

topologically nearest particle to the particle at each side.  

 Since then, a lot of researchers have worked on improving its 

performance by designing or implementing different types of 

neighborhood structures in PSOs. Each neighborhood structure has its 

strength and weakness. It works better in one kind of problems, but worse 

on the other kind of problems. When using PSO to solve a problem, not 

only the problem needs to be specified, but the neighborhood structure of 

the PSO utilized, should also be clearly specified. 

 

 



3.7 PSO Algorithm [24] 

The PSO algorithm depends in its implementation in the following 

two relations: 

vid = w *vid + c1 *r1* (pid -xid) + c2  *r2* (pgd -xid)                                

…(3.1a) 

xid = xid + vid                                                                                          

…(3.1b) 

where c1 and c2 are positive constants, and r1 and  r2  are random function 

in the range [0,1],  xi =(xi1,xi2,…,xid) represents the i
th

 particle; pi=(pi1, 

pi2,… ,pid) represents the best previous position (the position giving the 

best fitness value) of the i
th

 particle; the symbol g represents the index of 

the best particle among all the particles in the population,  v = 

(vi1,vi2,…,vid) represents the rate of the position change (velocity) for 

particle i .  

Equation (3.1) is the equation describing the flying trajectory of a 

population of particles. Equation (3.1a) describes how the velocity is 

dynamically updated and Equation (3.1b) the position update of the changed 

abruptly. It is changed from the ―flying‖ particles. Equation (3.1a) consists of 

three parts. The first part is the momentum part. The velocity can’t be current 

velocity. The second part is the ―cognitive‖ part which represents private 

thinking of itself - learning from its own flying experience. The third part is 

the ―social‖ part that represents the collaboration among particles learning 

from group flying experience. 

  In equation (3.1a), if the sum of the three parts on the right side 

exceeds a constant value specified by user, then the velocity on that 

dimension is assigned to be ±vmax, that is, particle’s velocities on each 

dimension is clamped, to a maximum velocity vmax, which is an important 

parameter, and originally is the only parameter required to be adjusted by 



users. Big vmax has particles that have the potential to fly far past good solution 

areas while a small vmax has particles that have the potential to be trapped into 

local minima, therefore they are unable to fly into better solution areas. 

Usually a fixed constant value is used as the vmax, but a well-designed 

dynamically changing vmax might improve the PSO's performance. 

The PSO algorithm is simple in concept, easy to implement and 

computational efficient. The original procedure for implementing PSO is as 

follows:   

1. Initialize a population of particles with random positions and 

velocities on          d-dimensions in the problem space. 

2. PSO operation includes: 

a. For each particle, evaluate the desired optimization fitness function 

in  

d variables. 

b. Compare particle's fitness evaluation with its pbest. If current value 

is better than pbest, then set pbest equal to the current value, and 

pi equals to the current location   xi in d-dimensional space. 

c. Identify the particle in the neighborhood with the best success so 

far, and assign its index to the variable g. 

d. Change the velocity and position of the particle according to 

equation (3.1a) and (3.1b). 

3.   Loop to step (2) until a criterion is met, usually a sufficiently good 

fitness or a maximum number of iterations. 

Like the other evolutionary algorithms, a PSO algorithm is a 

population based on search algorithm with random initialization, and there is 

an interaction among population members. Unlike the other evolutionary 

algorithms, in PSO, each particle flies through the solution space, and has the 

ability to remember its previous best position, survives from generation to 

generation. Furthermore, compared with the other evolutionary algorithms, 



e.g. evolutionary programming, the original version of PSO is faster in initial 

convergence through simplified social model while it is lower in fine tuning. 

The flow chart of PSO algorithm is shown in figure (3.2). [59] 

 

Figure (3.2) Flowchart of PSO Algorithm [58]. 
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3.8 The Parameters of PSO 

A number of factors will affect the performance of the PSO. These 

factors are called PSO parameters, these parameters are: 

1. Number of particles in the swarm affects the run-time significantly, thus a 

balance between variety (more particles) and speed (less particles) must be 

sought. 

2. Maximum velocity (vmax) parameter. This parameter limits the 

maximum jump that a particle can make in one step, thus a too large 

value for this parameter will result in oscillations, while a too small 

value could cause the particle to become trapped in a local minima. 

The maximum velocity parameter is set to the default value of 2 (this 

value was suggested in earlier works in PSO). [48]  

3.  The role of the inertia weight w, in equation (3.2a), is considered 

critical for the PSO’s convergence behavior. The inertia weight is 

employed to control the impact of the previous history of velocities 

on the current one. A large inertia weight facilitates global 

exploration (searching new areas); while a small one tends to 

facilitate local exploration, i.e., fine-tuning the current search area. 

Experimental results indicate that it is better to initially set the inertia 

to a large value, in order to promote global exploration of the search 

space, and gradually decrease it to get more refined solutions. Thus, 

an initial value around 1.2 and a gradual decline towards 0 can be 

considered as a good choice for w. [41] 

4. The parameters c1 and c2, in equation (3.1a), are not critical for PSO’s 

Convergence. However, proper fine-tuning may result in faster 

convergence and alleviation of local minima. An extended study of 

the acceleration parameter in the first version of PSO is given in 



recent work reports that it might be even better to choose a larger 

cognitive parameter, c1 than a social parameter c2 but with c1 + c2 = 4.  

5. The parameters r1 and r2 are used to maintain the diversity of the 

population, and they are uniformly distributed in the range [0,1]. [41] 

From the above case, we can learn that there are two key steps 

when applying PSO to optimization problems: the representation of the 

solution and the fitness function. One of the advantages of PSO is that 

PSO takes real numbers as particles.  

Secondly global version vs. local version: We have introduced two 

versions of PSO; global and local versions. Global version is faster but 

might converge to local optimum for some problems. Local version is a 

little bit slower but not easy to be trapped into local optimum. One may 

use global version to get quick results and use local version to refine the 

search [20]. The most common parameters of  PSO are shown in table 

(3.1).  

Table (3.1) the most common Parameters of PSO. 

No. Parameter Symbol Parameter value 

1 No. of particles Psize Psize[10-40] 

particles 2 Maximum velocity vmax vmax  = 2 

Minimum velocity vmin vmin = - vmax 

3 Inertia weight w w[0.4 ,0.9] 

4 First acceleration parameter c1 c1  [ 0.5, 2] 

Second acceleration parameter c2 c1=c2  or  c1+ c2 = 4 

5 Diversity of the population 

Maintenance 

r1 , r2 r1 , r2 [0,1] 

6 Iterations Iter.    30000 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 

Four 



Chapter four 

PSO Cryptanalysis Stream Cipher Cryptosystems 
 

 Introduction4.1  

In stream cipher systems field, the Linear Feedback Shift Register 

(LFSR) cryptosystems used widely. In this chapter, first, a method 

introduced to construct a linear equations system of a single LFSR. This 

method developed to construct a system of linear equations (SLE) of the 

attacked a LFSR cryptosystem, where the effect of combining function 

CF) of LFSR is considerable. Three study cases are suggested to be 

cryptanalyzed: Single LFSR, Linear, and Threshold. 

This thesis aims to find the initial values of every LFSR in the 

attacked cryptosystem, using proposed PSO cryptanalysis system, 

depending on the following information: 

1. The length of every LFSR and its feedback polynomial are known. 

2. The algebraic description of CF is known. 

3. The keystream (output sequence S) generated from the LFSRS is known, or 

part of it, practically, that means, a known plain attack be applied [47]. 

This research consists of three stages, constructing the SLE, 

applying the proposed PSO cryptanalysis system to solve SLE and find 

the actual initial key for the attacked cryptosystem, and lastly, decrypt the 

ciphertext to obtain the real plaintext. 

4.2 Constructing SLE for Stream Cipher Cryptosystems 

LFSRs are used widely in stream cipher systems field. A LFSR 

System consists of two main basic units. First, a LFSR function and 

initial state values. The second one is, the Combining Function (CF), 

which is represented by a Boolean function. Most of all stream cipher 



systems depend on these two basic units. This section, describes the 

attack of three case studies of stream ciphers using PSO algorithm.  

 

4.2.1 Single LFSR Stream Cipher Cryptosystem (SLSCC)  

The first case study which we want to attack, is a single LFSR, 

which this system has no combining function, so we expect that it's can 

be expressed as one linear equations system. 

Most practical stream cipher cryptosystems designs center around 

LFSR. In the early days of electronics machines, they were easy to build. 

A SR is an array of bit memories and the feedback sequence is only a 

series of XOR gates. A LFSR-based on stream cipher gives a lot of 

security with only a few logic gates. 

To see how the SLSCC acts, let's assume, a 4-bit LFSR has 1+x+x
4
 

recursive polynomial. If it is initialized with the value 1010, it produces 

the following sequence of internal states before repeating; See Table 

(4.1):  

Table (4.1): SLSCC with length L=4. 

0 1 0 1 

1 0 1 1 

0 1 1 0 

1 1 0 0 

1 0 0 1 

0 0 1 0 

0 1 0 0 

The output sequence is the string of  least significant bits: 0101100. 

Let SRL be a single LFSR with length L, let A0=(a-1,a-2,…,a-L) be 

the initial value key vector of SRL, s.t. a-j, 1jL, be the component j of 

the vector A0, this mean, a-j is the initial bit of stage j of SRL. Let 

C0
T
=(c1,…,cL) be the feedback vector, where cj{0,1}, if cj=1 this means 

that the stage j is connected else it's not connected. Let S=  1m

0iis



  or 



S=(s0,s1,…,sm-1) be the sequence with length m generated from SRL. The 

generation of S depending on the following relation:  

si =ai =




L

1j
jji

ca  i=0,1,…      …(4.1) 

Relation (4.1) represents the linear recurrence relation [4]. 

The objective is finding the vector A0, when L, C0 and S are all known. 

Let M be a LL matrix, which is describes the initial phase of SRL: 

M=(C0|I LL-1), where M
0
=I. 

Let A1 represents the new initial of SRL after one shift, s.t. 

A1=A0M=(a-1,a-2,…,a-L) 

























L

1j
jj

L

2

1

ca(

00c

00c

01c









,a-1,…,a1-L). 

In general, 

Ai=Ai-1M, i=0,1,2,…       …(4.2) 

Equation (4.2) can be considered as a recurrence relation, so we have: 

Ai=Ai-1M=Ai-2M
2
=…=A0M

i
     …(4.3) 

notice that: 

M
2
=[C1C0|ILL-2] and so on until get M

i
=[Ci-1…C0|ILL-i], where 1i<L. 

When CP=C0 then M
P+1

=M, where P is the period of the vector C. 

Now we can calculate Ci [4] as follows: 

Ci=MCi-1, i=1,2,…       …(4.4) 

Relation (4.3) can be rewritten in matrix form: 

A0Ci=si , i=0,1,..,L-1      …(4.5) 

if i=0 then A0C0=s0 is the 1
st
 equation of the SLE, 

if i=1 then A0C1=s1 is the 2
nd

 equation of the SLE, and  

if i=L-1 then A0CL-1=sL-1 is the L
th

 equation of the SLE. 

In general: 



A0=S        …(4.6) 

 represents the matrix of all Ci vectors s.t. 

 = (C0C1…CL-1)       …(4.7) 

The SLE can be formulated as follows: 

 = [
T
|S

T
]        …(4.8) 

 represents the extended (augmented) matrix of the SLE. 

 

Example (4.1) 

Let the SR3 has C0
T
=(0,1,1) and S=(0,0,1), by using equation (4.6), we 

get: 

C1=MC0=

















































0

1

1

1

1

0

001

101

010

, in the same way, C2=
















1

1

1

,  

From equation (4.8) we have: 

A0

















101

111

110

=(0,0,1), this system can be written as equations: 

      

a-2+a-3= 0 

a-1+a-2      = 0 

a-1+a-2+a-3= 1 

Then the augmented matrix  of SLE after using formula (4.8) is: 

=

















1111

0011

0110

        …(4.9) 

The pseudo code of constructing the SLE (find the extended matrix 

) for single LFSR algorithm is: 



 

 

4.2.2 Linear Stream Cipher Cryptosystem (LSCC)  

The second case study that is applied in this thesis in the 

cryptanalysis of stream cipher is the linear function or XOR gate. Figure 

(4.1) describes the sequence S generated from the linear system. 

 

Figure (4.1): The keystream sequences generated from LSCC. 

 

The output of each LFSR in the system is known as the simplest 

balance system. It is expected that each LFSR can be expressed by one 

SLE, but, each has unknown absolute values, since the output of each 

LFSR is unknown. Then, we concatenate the constructed LSCC with 

each other to construct one SLE with known absolute values.  

For example, the logical truth table of the combining function of 2-

LFSR’s linear cryptosystem is as shown in Table (4.2). 

  

Table (4.2): The XOR relation for LSCC, n=2. 

NAME : Constructing SLE for SLSCC Algorithm 

(CSLESRA). 

INPUT : L, C0, S {length of LFSR, feedback vector, output seq.} 

PROCESS : Construct the Matrix M {M=[C0|I LL-1]} 

    Construct the Matrix =(C0C1…CL-1) 

OUTPUT :  The SLE =[ 
T
|S

T
] {the extended matrix of LES }   

END. 

S1=s01 s11 … sm-1,1 

s0 s1 … sm-1=S 

S2=s02 s12 … sm-1,2 

 

Sn=s0n s1n … sm-1,n 



  x1 

  0 1 

x2 
0 0 1 

1 1 0 

 

Let’s have n of 
jLSR with length Lj, j=1,2,…,n, with following 

feedback vector: 

C0j=





















jr0

j02

j01

j
c

c

c


, and has unknown initial value vector A0j=(a-1j,…,a-Lj), so 

jLSR has Mj=(C0j| 1LL jj
I 

) 

By using recurrence equation (4.4), 

Cij=MjCi-1,j, i=1,2,…        …(4.10) 

by using equation (4.5): 

A0jCij=sij, i=0,1,…,L-1 and Sj=(s0j,s1j,…,sm-1,j). 

Sj represents the output vector of 
jLSR , which of course, is 

unknown too. m represents the number of variables produced from the 

LFSR’s with consider to CF, in the same time its represents the number 

of equations which are be needed to solve the SLE. Of course, there is n 

of SLE (one SLE for each 
jLSR  with unknown absolute values). 

Now, let A0 be the extended vector for m variables, which consists 

of initial values from all LFSR’s and  is the matrix of Ci vectors 

considering the CF, Ci represents the extended vector of all feedback 

vectors Cij, then A0=S. 

As known, the outputs of every LFSR of the LSCC are XORed with 

each other to obtain the sequence S which is generating from this 

cryptosystem. 



Since the 
jLSR has Lj number of unknown initial values, then m=



n

1j
jL . 

Now, all the vectors A0j are extended from rj to m as follows: 

A01=( 1L11 1
a,...,a ,0…0,…,0…0) 

A02=(0…0, 2L12 2
a,...,a ,…,0…0) 

And so on.. 

A0n=(0…0,0…0, …, nLn1 n
a,...,a ) 

And let: 

A0=


n

1j
j0

A =( 1L11 1
a,...,a , 2L12 2

a,...,a ,…, nLn1 n
a,...,a )=(l0,l1,…,lm-1) 

Where l0=a11, l1=a21,…,lm-1= nLn
a , or it can be deduced from the following 

formula: 

lk=aij, where k=(i-1)+




1j

1h
hL , j=1,2,…,n, i=1,2,…,Lj.  …(4.11) 

In fact, A0 represents a concatenation of all A0j vectors 

respectively. The same process will be done on the feedback vectors Cij 

which must be found first from equation (4.10). Therefore, Ci will be the 

extended concatenation vector of all feedback Cij vectors too, s.t. 

Ci=





















in

2i

1i

C

C

C


, i=0,1,…,m-1 



Since the CF of LSCC is XOR, then S can be obtained from 

XORed all unknowns Sj. Since we need m equations, that means every 

LFSR shifts m movements, then: 

Sj=(s0j,s1j,…,sm-1,j), j=1,2,…,n, and si=


n

1j
ij

s , i=0,1,…,m-1, (the sum 

here is XOR), then: 

S=


n

1j
j

S =(s0,s1,…,sm-1) 

So  can be gotten from equation (4.7) and by applying equation 

(4.6), the SLE can be constructed. 

The pseudo code of constructing the SLE for linear system algorithm is: 



 

Example (4.2) 

Let’s have the following feedback vectors for 3 LFSR with length 2,3 

and 4: 

C01= 








1

1
, C02=

















1

0

1

 and C03=





















1

0

0

1

, then m=9. 

And let S=(1,1,1,0,1,1,0,1,1). 

By using equation (4.4),  

C01=C31=C61= 








1

1
,C11=C41=C71= 









1

0
, and C21=C51=C81= 









0

1
. 

NAME : Constructing SLE for LSCC Algorithm (CSLELSA). 

INPUT : n, S  {n: number of LFSR's} 

    Lj, C0j , j=1 : n {length of LFSR(i), feedback vector(i)} 

PROCESS : calculate m = L1+L2+…+Ln 

  for j = 1 : n 

      Construct the Matrix Mj 

      C0j = C01jC02j…C0Ljj 

  end; {for  j } 

  for i = 1 : m 

      for j = 1 : n 

   Cij = Mj  Ci-1j 

  end; {for i,j } 

  Ci = concatenation (Ci1,Ci2,…,Cin); {i=0,1,…,m-1} 

    Construct the Matrix =(C0C1…Cm-1) 

OUTPUT :  The LES =[
T
|S

T
] {the extended matrix of SLE }   

END. 



C02=C72=










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



1

0

1

,C12=C82=


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
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1

,C22=

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
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0

,C32=
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
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
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0
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1

,C42=
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











1

0

0

,C52=










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



0

1

0

, 

C62=
















0

0

1

. 

C13=





















1

1

0

1

,C23=





















1

1

1

1

,C33=



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





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
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



1

1

1

0

,C43=










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

0
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1

1

,C53=



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
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
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0

,C63=


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,C73=





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




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
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

1
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,  

C83=












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

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



1

1

0

0

. 

Then C0
T
=(1,1,1,0,1,1,0,0,1). 

The SLE can be written as follows: 

A0



































110101111

101011110

010111100

011010111

110010111

100101110

111001011

011011111

101101101

=(1,1,1,0,1,1,0,1,1) 

s.t. 



A0=(a11,a21,a12,a22,a32,a13,a23,a33,a43)=(l0,l1,l2,l3,l4,l5,l6,l7,l8), and the 

extended matrix  which is can be calculated from equation (4.8) is: 

 

=



































1110011101

1101110110

0010100111

1101001001

1011110010

0111001111

1111111001

1110111110

1100110111

    …(4.12) 

 

 

4.2.3 Nonlinear Threshold Stream Cipher Cryptosystem (NTSCC) 

The third proposed study case, is the Threshold Generator known. 

Its CF called the majority function. This cryptosystem consists of odd 

numbers of LFSRs, so naturally, there are a majority in the output bits of 

one or another, this means, which one is the major, will be the output. So 

it can be represented by following equation: 

BF3(x1,x2,x3)=x1.x2  x1.x3  x2.x3 

Table (4.3) shows the truth table of 3-LFSR’s of Threshold 

generator cryptosystem.  

 

Table (4.3): The 3-LFSR’s of NTSCC Generator. 

BF3 x3 x2 x1 

0 0 0 0 

0 1 0 0 

0 0 1 0 

1 1 1 0 



0 0 0 1 

1 1 0 1 

1 0 1 1 

1 1 1 1 

 

for this reason m=L1L2+L1L3+L2L3. 

The initial value of this cryptosystem is: 

 

A0=A01A02+A01A03+A02A03=(d0,d1,…,dm-1)    …(4.13) 

 (where + is concatenation to the vectors) s.t. 

d0=a-11a-12, d1=a-11a-22,…,dr-1= 3L2L 32
aa , or it can be taken from the 

following System of  NonLinear Equations (SNLE): 

 

dk























1L,...,0j,1L,...,0i.t.s,LLLLjL*ikwhen,aa

1L,...,0j,1L,...,0i.t.s,LLjL*ikwhen,aa

1L,...,0j,1L,...,0i.t.s,jL*ikwhen,aa

32312133j2i

312133j1i

2122j1i

…(4.14) 

(this arrangement of unknowns can be changed according to the 

researcher requirements so it is not standard). 

In the same way, equation (4.14) can be applied on the feedback vector 

Cij: 

Ci=Ci1Ci2+Ci1Ci3+Ci2Ci3. 

And the sequence S will be: 

S=S1S2+S1S3+S2S3 s.t. si=si1si2  si1si3  si2si3, 

si is the element i of S. 

So the SNLE which be changed to SLE can be gotten by equation (4.13). 

Figure (4.2) shows the sequence S which is generated from Brüer 

Generator [4]. 



 
Figure (4.2) The output sequence S generated from NTSCC. 

The pseudo code of constructing the SLE for NTSCC algorithm is: 

 

 

Example (4.3) 

Let’s have the following feedback vectors for 3 LFSR with length 2,3 and 

4: 

s0 s1 … sm-1=S 

S1=s01 s11 … sm-1,1 

S2=s02 s12 … sm-1,2 

S3=s03 s13 … sm-1,3 

 

 
  

 
 

 

NAME  : Constructing SLE for NTSCC Algorithm (CSLENTSA). 

INPUT : S  

    Lj, C0j , j = 1 : 3 

PROCESS : Calculate m = L1*L2+ L1*L3+ L2*L3 

  for j = 1 : 3 

      Construct the Matrix Mj 

  end; {for j } 

  C0j = C01j*C02j+C01j*C03j+C02j*C03j 

  for i = 0 : m-1 

     Cij = Ci1j*Ci2j+Ci1j*Ci3j+Ci2j*Ci3j 

  end; {for i } 

  for i = 0 : m-1 

       Ci = Ci1*Ci2+Ci1*Ci3+Ci2*Ci3 

  end; {for i } 

  Construct the Matrix =(C0C1…Cm-1) 

OUTPUT :  The SLE =[ 
T
|S

T
] {the extended matrix of SLE }   

END. 



C01= 








1

1
, C02=

















1

0

1

 and C03=





















1

0

0

1

, then m=2*3+2*4+3*4=26. 

And let the required sequence is: 

S=(1,0,1,1,0,1,1,1,1,1,0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,1,0). 

By using equation (4.4),  

C01=C31=C61=C91=C12,1=C15,1=C18,1=C21,1=C24,1= 








1

1
, 

C11=C41=C71=C10,1=C13,1=C16,1=C19,1=C22,1=C25,1= 








1

0
, 

C21=C51=C81=C11,1=C14,1=C17,1=C20,1=C23,1= 








0

1
. 

C02=C72=C14,2=C21,2=
















1

0

1

, C12=C82=C15,2=C22,2=
















1

1

1

, 

C22=C92=C16,2=C23,2=
















1

1

0

,C32=C10,2=C17,2=C24,2=
















0

1

1

, 

C42=C11,2=C18,2=C25,2=
















1

0

0

,C52=C12,2=C19,2=
















0

1

0

,C62=C13,2=C20,2=
















0

0

1

. 

C03=C15,3=





















1

0

0

1

,C13=C16,3=





















1

1

0

1

,C23=C17,3=





















1

1

1

1

,C33=C18,3=





















1

1

1

0

,C43=C19,3=





















0

1

1

1

, 

C53=C20,3=





















1

0

1

0

,C63=C21,3=





















0

1

0

1

,C73=C22,3=





















1

0

1

1

,C83=C23,3=





















1

1

0

0

, 

C93=C24,3=





















0

1

1

0

,C10,3=C25,3=





















0

0

1

1

, C11,3=





















1

0

0

0

,C12,3=





















0

1

0

0

, C13,3=





















0

0

1

0

,C14,3=





















0

0

0

1

. 

 

by applying equation (4.4), C0
T
 will be: 



C0
T
=(1,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,0,0,0,0,1,0,0,1). 

Therefore the augmented matrix will be:  

 

=

















000110000000000110000100000

110010000100110011001101101

  …(4.15) 

4.3 The Proposed PSO Cryptanalysis System (PSOCS) 

PSO is an extremely simple concept, and can be implemented 

without complex data structure. No complex or costly mathematical 

functions are used, and it doesn’t require a great amount of memory [49]. 

The facts of PSO has fast convergence, only a small number of control 

parameters, very simple computations, good performance, and the lack of 

derivative computations made it an attractive option for solving the 

problems. 

In this thesis we will use one of important methods of swarm 

intelligence methods; it’s the PSO method, in the field of cryptanalysis of 

stream cipher systems, which it has good achievement in the 

cryptanalysis field. Before we discuss the operators and parameters of 

PSOCS we will show how the system constructs the SLE. 

 

4.3.1 PSOCS Constructing a SLE  

Before we start the attack of a certain class of stream ciphers using 

PSOSC, the first step is to select the known algorithm that will be 

attacked. The second step is to prepare the constructed key equations for 

m steps, where m is the length of string. These equations will be 

represented in binary form. 

 

I. PSOCS Constructing a SLE for SLSCC  

For example, let us use 10-stage m-LFSR, which has 1+x
3
+x

10
 as 

characteristic primitive polynomial. Table (4.4) shows the 10-stage 



equations of LES for single LFSR with binary representation. 

 

Table (4.4) SLE for SRSCC with binary representation. 

Eq. No. Equation Binary Code 

1 a3+a10=1 0010000001 1 

2 a2+a9=0 0100000010 0 

3 a1+a8=1 1000000100 1 

4 a3+a7+a10=1 0010001001 1 

5 a2+a6+a9=0 0100010010 0 

6 a1+a5+a8=1 1000100100 1 

7 a3+a4+a7+a10=1 0011001001 1 

8 a2+a3+a6+a9=0 0110010010 0 

9 a1+a2+a5+a8=1 1100100100 1 

10 a1+a3+a4+a7+a10=0 1011001001 0 

II. PSOCS Constructing a SLE for SLSCC  

For example, let us use two LFSR’s. Each has the following 

information:  

• First LFSR has characteristic polynomial 1+x+x
4
 with initial key values 

1001.  

• Second LFSR has characteristic polynomial 1+x+x
7
 with initial key values 

1000001.  

The equations of SLE for the linear cryptosystem are shown in Table 

(4.5). 

 

 

 

 

 

 

 

 



Table (4.5) SLE for SLSCC with binary representation. 

Eq. No. Separating Equations Single Equations Binary Code 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

a1+a4=0...b1+b7=0 

a1+a3+a4=0...b1+b6+b7=0 

a1+a2+a3+a4=0...b1+b5+b6+b7=0 

a2+a3+a4=1...b1+b4+b5+b6+b7=0 

a1+a2+a3=1...b1+b3+b4+b5+b6+b7=0 

a2+a4=1...b1+b2+b3+b4+b5+b6+b7=0 

a1+a3=1...b2+b3+b4+b5+b6+b7=1 

a1+a2+a4=0...b1+b2+b3+b4+b5+b6=1 

a3+a4=1...b2+b3+b4+b5+b7=1 

a2+a3=0...b1+b2+b3+b4+b6=1 

a1+a2=1...b2+b3+b5+b7=1 

a1+a4+b1+b7=0 

a1+a3+a4+b1+b6+b7=0 

a1+a2+a3+a4+b1+b5+b6+b7=0 

a2+a3+a4+b1+b4+b5+b6+b7=1 

a1+a2+a3+b1+b3+b4+b5+b6+b7=1 

a2+a4+b1+b2+b3+b4+b5+b6+b7=1 

a1+a3+b2+b3+b4+b5+b6+b7=0 

a1+a2+a4+b1+b2+b3+b4+b5+b6=1 

a3+a4+b2+b3+b4+b5+b7=0 

a2+a3+b1+b2+b3+b4+b6=1 

a1+a2+b2+b3+b5+b7=0 

10011000001 0 

10111000011 0 

11111000111 0 

01111001111 1 

11101011111 1 

01011111111 1 

10100111111 0 

11011111110 1 

00110111101 0 

01101111010 1 

11000110101 0 

 

III. PSOCS Constructing a SLE for STSCC  

Three LFSR’s are used, each has the following information:  

 1st
 LFSR has characteristic polynomial 1+x+x

3
 with initial key values 

101.  

 2nd
 LFSR has characteristic polynomial 1+x+x

4
 with initial key values 

1001.  

 3rd
 LFSR has characteristic polynomial 1+x

2
+x

5
 with initial key values 

10001.  

When the SNLE changes, 47 equations of SLE are obtained for the 

Threshold generator cryptosystem shown in Table (4.6).  

Table (4.6) SLE for STSCC with binary representation. 

Eq. 

No. 
Equations Binary Code Extension of Equations in Binary Code 

1 a1+a3=0..b1+b4=0..c2+c5=1 
101100101001 

0 

10010000100101001000000100101001000000000001001 

0 

2 a1+a2+a3=0..b1+b3+b4=0..c1+c4=1 
111101110010 

0 

10111011101110010100101001010010000001001010010 

0 

3 a2+a3=1..b1+b2+b3+b4=0..c2+c3+c5=1 
011111101101 

1 

00001111111100000011010110101101011010110101101 

1 

4 a1+a2=1..b2+b3+b4=1..c1+c2+c4=1 
110011111010 

1 

01110111000011010110100000000000110101101011010 

1 

5 a3=1..b1+b2+b3=1..c1+c2+c3+c5=0 
001111011101 

1 

00000000111000000000001110111101111011110100000 

1 



⁝ ⁝ ⁝ ⁝ 

41 a2=0..b1+b2=1..c4+c5=1 
010110000011 

1 

00001100000000000000110000000011000110000000000 

1 

42 a1=1..b4=1..c3+c4=0 
100000100110 

1 

00010000000000110000000000000000000000000000110 

1 

43 a1+a3=0..b3=0..c2+c3=0 
101001001100 

0 

00100000001001100000001100000000000001100000000 

0 

44 a1+a2+a3=0..b2=0..c1+c2=1 
111010011000 

0 

01000100010011000110001100000000110000000000000 

0 

45 a2+a3=1..b1=1..c1+c2+c5=0 
011100011001 

1 

10001010010010100100001000000000010000000000000 

0 

46 a1+a2=1..b1+b4=0..c1+c2+c4+c5=0 
110100111011 

0 

00100010001001000011000110001000011000000000000 

0 

47 a3=1..b1+b3+b4=0..c1+c2+c3+c4+c5=0 
001101111111 

0 

01000100010011000110001100010000011000010000000 

0 

 

Each time, m equations are needed to solve the system for each 

cryptosystem. First, one is the SLE of SRSCC, where m here equals the 

length of LFSR. The second, is the SLE of SLSCC, m represents the 

summation of the two combined LFSR’s. While the third, is the SNLE of 

STSCC, which needs  

m =r1*r2+r1*r3+r2*r3, where ri
 
is length of register i, i=1,2,3, to solve the 

system. 

 

4.3.2 Representation of a Random Solution  

For the purpose of this study, a SLE or SNLE is decoded by a 

binary code. For example the equation a2⊕a2=1 of a single LFSR with 

length 5 is decoded by the equation string (01001-1), where the absolute 

value (right hand) of the equation is the real output key of the attacked 

cryptosystem. The equations must be constructed and stored in data base 

file, since these equations are constant for fixed LFSR’s length according 

to the connection function and combining function (if it exist). This 

representation indicates that the size of the solutions space is 2
m

-1 

(ignoring the zero string). When m is as large as possible, then a purely 

random search is not acceptable. 

  



4.3.3 Swarm Solution Initialization  

For the initialization process, it can initialize the population of the 

swarm by a random sample of combinations of 0 and 1 with m-string length 

which represents the probable initial values LFSR’s. The creation of the 

swarm's population must submit to what we called non-zero initial 

condition. In this condition, the zero's initial of LFSR’s must be avoided. 

For example, you wish to initiate initial values of LFSR with length 5; you 

ignore the initial value 00000 for single LFSR or other cryptosystems. 

Another example the string 00001100100 is ignored for linear cryptosystem, 

which consists of two LFSR’s with lengths 4 and 7 respectively, since the 

initial of the first register, is 0000. A pseudo code for generating the swarm 

initialization is shown below: 

 

 4.3.4 PSOSC Fitness Function 

The fitness function is used to determine the ―best‖ solution. The 

process of the fitness function selection is as follows:  

NAME : Swarm Initialization Algorithm (SIA). 

INPUT : SS, L   {Swarm Size, Length of Particle} 

PROCESS : for i = 1 : SS  

for j = 1 : L  

pj = Random(2);  

vj = Random(2); 

end; 

Particle_P(i)=(s1,s2,…,sL);  {position} 

Particle_V(i)=(v1,v2,…,vL);  {velocity} 

OUTPUT :  Swarm of Particles   { position and velocity } 

  

END. 



1. From swarm, a particle initial solution of length n-bits is extended to 

m bits; m=L1⊕L2⊕L3
 
for linear system, m=L1*L2⊕L1*L3⊕L2*L3 

for Threshold cryptosystem and it is remains as it is for the Single 

LFSR (m=n=L), so we get the vector A=(a1,a2,…,am) after extension.  

2. The extended string bit aj product with corresponding equation vector 

bit xj, where 1≤j≤m s.t. the equation string is X=(x1,x2,…,xm) and 

calculate the observed value: 

oi=a1*x1a2*x2…am*xm=



m

1j

T

jj AXx*a    …(4.16) 

3. Compare the observed value oi with key value bi which represents the 

known output value of the cryptosystem, by using mean absolute 

error (MAE), in general O=(o1,o2,…,om) and B=(b1,b2,…,bm) s.t. 

MAE = |BO|
m

1
bo

m

1 m

1i
ii 



    …(4.17) 

4. The Fitness value is 

Fitness = 1-MAE = 1- 



m

1i
ii KO

m

1
     …(4.18) 

where 

m : The length of the individual string or equation string.  

aj: is the initial value j in vector A. 

xj: is the equation variable j in the string X. 

oi: is the measured or observed value i in the vector O calculated from 

equation (4.16). 

bi: is the key bit (actual value) I in the vector B. 

When the observed vector O matches the key vector B, for all 1≤i≤m, 

then the summation terms MAE in equation (4.17) evaluate to 0 so the 

fitness value is 1. The fitness equation is bounded below by 0 though it 

does not actually evaluate to 0. The fact that a fitness value of 0 is never 

achieved does not affect the algorithm since high fitness values are more 



important than low fitness values. As a result, the search process is 

always moving towards fitness values closer to or equal 1. The steps of 

the Stream Cipher Fitness Algorithm are shown below: 

 

  

4.3.5 PSOSC Parameters Selection  

As the main objective of this research is to verify the impact of the 

selection of social topologies in the behavior of the PSO, the tuning 

parameters are fixed. They are tuned to the values that are widely used by 

the community and that are seemed to be the most appropriate ones. 

Table (4.7) shows the different parameters used.  

Table 4.7: Parameters selection of PSOCS 

Parameter Symbol Description Value 

c1 Self confidence 1.5 – 2.0 

NAME : Stream Cipher Fitness Algorithm (SCFA). 

INPUT       : READ A vector; {Initial string with length L} 

                     READ X vector; {Equation string from data base file} 

            READ B vector ;{Actual key=absolute value of SLE} 

OUTPUT   : Fitness value; 

PROCESS  : FOR i = 1 : m 

           oi=


m

1j
jj x*a ; {XOR sum, O is observed key vector} 

AEi = |oi-bi|; 

           END; 

            MAE= 


m

1i
iAE

m

1
;{ MAE is the Mean Absolute Error} 

            Fitness = 1-MAE; 

END. 

 



c2 Swarm Confidence c1 

w Inertia weight 0.9,…,0.4 

vmax maximum of velocity 0.5 

vmin minimum of velocity -vmax 

Swarm_Size Number of particles in the swarm 30-50 

Max_Iter Maximum number of iteration 100-2000 

 

4.3.6 The PSOCS Algorithm  

The following are the main steps of an algorithmic description of the 

attack on stream cipher using PSOCS: 

 

4.4 Experimental Results of Applying PSOCS 

Two stopping criteria are used to stop the system of the PSOCS, 

the first criterion, is to reach the max_iter that is enough to reach this 

level of fitness. The second, when the fitness reaches the value equal to 

NAME : PSOCS algorithm (PSOCSA). 

INPUT      : The construction SLE/SNLE, parameters (c1, w, v
max 

,SS, 

 m,Max_Iter). 

OUTPUT  : The key having the highest fitness as found by PSOCS; 

PROCESS :  

Step 1: Randomly generate the initial particles (keys) and velocities to a swarm.  

Step 2: Calculate the fitness value of each of the particles (keys) using equation (4.18).  

Step 3: If the current position of the particle is better than the previous history, 

update the particles to indicate this fact.  

Step 4: Find the best particle (key) of the swarm. Update the positions of the 

particles by using equations (3.1-a, 3.1-b):  

Step 5: If the Max_iter has been reached or if the key with fitness=1.0 value is 

found, then goto step 6 or else goto step 2.  

Step 6: Keep the best key obtained so far in the output key variables. 

END. 
 



1.0, then there is no need to reach the maximum number of iterations. 

Now we will describes the experimental results of applying PSOCS for 

each study case.  

The best way to illustrate the proceeding of PSOCS algorithm is by 

looking at the development of the swarm fitness results over time.  

 

4.4.1 Experimental Results of Applying PSOCS on SLSCC  

For this study case, only 10 initial particles (keys) are appear in the 

swarm. The PSOCS began by generating 10 random initial particles 

(keys) as shown table (4.8). 

Table (4.8): PSOCS initialization of random initial particles for SLSCC. 

Key Strings of Swarm of SLSCC Fitness 

1 00010111110 0.3636 

2 00110010110 0.4545 

3 01111100111 0.5455 

4 00110010110 0.4545 

5 10111111100 0.3636 

6 01110011010 0.4545 

7 11010101111 0.6364 

8 11011001100 0.5455 

9 00010111110 0.3636 

10 11011000101 0.5455 

Average of Fitness 0.4727 

 

As expected, none of the random keys are close to the actual key 

which is reflected in the fact that the average fitness for these keys is 

0.4727. The best of these 10 random keys (key7) has a fitness value of 

only 0.6364.  

After only 10 iterations, this swarm of 10 keys begins to take on a 

set of common features that approach the exact key: The PSOCS results 

after 10 generations, the initial particles (keys) as shown table (4.9). 



 

Table (4.9): The PSOCS results after 10 generations for SLCSS. 

Key Strings of Swarm of SLCSS Fitness 

1 11010001010 0.8182 

2 00000001000 0.4545 

3 00000000000 0.0909 

4 11010001010 0.8182 

5 00000001000 0.4545 

6 00000001000 0.4545 

7 00000001000 0.4545 

8 00000000000 0.0909 

9 00000001000 0.4545 

10 11010001010 0.8182 

Average of Fitness 0.4909 

 

Now the average fitness is 0.4909. The best key (key1) has fitness 

value of 0.8182. After 30 iterations, the swarm begins to converge at a high 

rate of speed. 

After only 20 iterations, this swarm starts to take on a set of 

common features that approach the exact key: The PSOCS results after 

20 generations, the initial particles (keys) are shown table (4.10).  

Table (4.10): The PSOCS results after 20 generations for SLCSS. 

Key Strings of Swarm of SLCSS Fitness 

1 10000000100 0.9091 

2 00000000100 0.3636 

3 10000000100 0.9091 

4 00000000100 0.3636 

5 00000000100 0.3636 

6 10000000100 0.9091 

7 10000000100 0.9091 

8 10000000100 0.9091 

9 10000000100 0.9091 

10 00000000100 0.3636 

Average of Fitness 0.6909 



Now the average fitness is 0.6909. The best key (key1) has fitness 

value of 0.9091. After 20 iterations, the swarm begins to converge at a high 

rate of speed. 

After 45 iterations the PSOCS is stopped since it finds the actual 

key as shown in table (4.11). 

Table (4.11): The PSOCS finds actual key after 45 generations for SLCSS. 

Key Strings of Swarm of SLCSS Fitness 

1 10000000001 1.0000 

2 11010101000 0.8182 

3 11010101000 0.8182 

4 11010101000 0.8182 

5 00000000000 0.0909 

6 11010101000 0.8182 

7 01000001000 0.7273 

8 11010101000 0.8182 

9 11010101000 0.8182 

10 10000000001 1.0000 

Average of Fitness 0.7364 

 

The average fitness is now at 0.7364, key1 and key8 turn out to 

have the highest fitness (1.0) and on test is the exact key.  

Table (4.12), provides the iteration number for which improvement 

is noted in the evaluation function, together with the value of the 

function. 

  

Table (4.12): Results of applying PSOSC on SLSCC. 

Iter. Key Fitness Average Best Initial Key 

0 7 0.6364 0.4727 11010101111 

10 4 0.8182 0.4909 11010001010 

20 1 0.9091 0.6909 10000000100 

45 1 1.0000 0.7364 10000000001 

The best initial key is:  1 0 0 0 0 0 0 0 0 0 1, which is the real initial key for 

SLSCC.  



Figure (4.3) shows the achievement of PSOCS to find the actual key for 

SLSCC. 
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Figure (4.3) PSOCS's results to find the actual key for SLSCC. 

 

4.4.2 Experimental Results of Applying PSOCS on LSCC  

For this study case (LSCC), 10 initial particles (keys) are appear in 

the swarm. The PSOCS began by generating 10 random initial particles 

(keys) as shown table (4.13): 

Table (4.13): PSOCS initialization of random initial particles for LSCC. 

Key Strings of Swarm of LSCC Fitness 

1 101100011010 0.4167 

2 111001011011 0.7500 

3 000010011001 0.5000 

4 000101010011 0.5000 

5 111001011011 0.7500 

6 110100100100 0.5000 

7 111011110111 0.5833 

8 000010011001 0.5000 

9 111011110111 0.5833 

10 111001011011 0.7500 

Average of Fitness 0.5333 



 

As expected, none of the random keys are close to the actual key 

which is described in the fact that the average fitness for these keys is 

0.5333. The best of these 10 random keys (key2) has a fitness value of 

only 0.7500.  

Table (4.14) shows the improvement in the results of finding the 

actual initial key for LSCC.  

Table (4.14): Results of applying PSOSC on SLSCC. 

Iter. Key Fitness Average Best Initial Key 

0 2 0.7500 0.5333 111001011011 

10 5 0.7500 0.5417 000110000000 

30 3 0.8333 0.6083 011100110100 

50 1 0.8333 0.6167 011010010101 

120 2 0.9166 0.6333 010111010110 

219 9 1.0000 0.6583 100011000001 

The best initial key is:  100011000001, which is the actual initial key.  

Figure (4.4) shows the achievement of PSOCS to find the actual key for 

SLSCC. 
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Figure (4.4) PSOCS's results to find the actual key for LSCC. 

 

4.4.3 Experimental Results of Applying PSOCS on NTSCC  

For another example of attack non-linear function, we have the 

NTSCC, only 10 initial keys were in the swarm. The system began by 

generating 10 random initial key as shown table (4.15):  

Table (4.15): PSOCS initialization of random initial particles for NTSCC. 

Key Best Key Extended Strings of Swarm of NTSCC Fitness 

1 
00100010000

1 
00000000000100000000000000100000000000000000001 0.5106 

2 
00010010000

1 
00001000100000000000100001000010000000000000000 0.5319 

3 
00001001000

1 
01010101010111011110111101100000110110000011011 0.4894 

4 
01000010000

1 
00001011000000000010110000001011000000101101011 0.4468 

5 
00100010000

1 
11011101110110011100111001110011100110000010011 0.4043 

6 
00010110000

1 
00000111011100000111001110000000111001110011100 0.5745 

7 
01100010000

1 
00000000101100000000000111101111000000111101111 0.4468 

8 
00100011000

1 
00000000011100000000001011000000101101011010110 0.4468 

9 
00010010100

1 
00000111011100000111001110000000111001110011100 0.5745 



10 
01000100000

1 
10111011101101101011010110101101000000110101101 0.4894 

 Average of Fitness 0.4787 

 

We notice that, none of the random keys are close to the actual key 

which is described in the fact that the average fitness for these keys is 

0.4787. The best of these 10 random keys (key6) has a fitness value of 

only 0.5745. 

Table 4.16 shows the improvement in the results of finding the real 

initial key for NTSCC. 

Table (4.16): Results of applying PSOSC on NTSCC. 

Iter. Fitness Ave. Best Key Extended Best Initial Key 

0 0.5745 0.4787 011011111100 00000111011100000111001110000000111001110011100 

20 0.6596 0.5372 101001001000 00100000001001000000000100000000000000100000000 

50 0.7021 0.5670 101011110010 01110000011110010000001001000000100101001010010 

100 0.7021 0.5957 101010110100 01010000010110100000001010000000101000000010100 

200 0.7447 0.6915 101100100100 10010000100100100000000010000100000000000000100 

384 1.0000 0.7281 101100110001 10010000100110001000001000110001000000000010001 

 

The best initial key is:  101100110001, which is the actual initial key.  

Figure (4.5) shows the achievement of PSOCS to find the actual 

key for NTSCC. 
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Figure (4.5) PSOCS's results to find the actual key for NTSCC. 

 

The attack on the class of stream ciphers must be run a number of 

times with a variety of parameter values. Figures (4.3), (4.4), and (4.5) 

present a plot comparing the values of fitness function and their averages 

with the number of iterations in the attack for the SLSCC, LSCC and 

NTSCC.  

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Chapter 

Five 



Chapter five 

Conclusions and Future Work 

 Conclusion.1 5 

From this work, several conclusions can be drawn as follows: 

1. In this thesis, we attack three study cases in stream cipher 

cryptosystem, these study cases are: Single LFSR, Linear System 

and Threshold Nonlinear system. 

2. The results illustrated in this thesis show that the PSO has a powerful 

algorithm that succeeds in cryptanalysis of stream cipher 

cryptosystems using a small number of fitness evaluations to reach 

the best fitness. It also requires only a small number of particles. 

The actual computation times required are also small compared to 

other algorithms. 

3. As the stream cipher be complicated as the needed number of 

generations and the consuming time are increased to find the 

actual initial key.  

4. This thesis can be considered as a warning for a stream cipher 

designer to avoid the weak points, which may be found in the 

stream cipher, which are exploit by the cryptanalysts. 

5.2 Suggestions for Future Work 

As future work, several suggestions can be put forward to improve 

PSO.  

1. PSOCS can be used to attack more complicated cryptosystems in 

the field of stream cipher (Geffe, or Bruer with more than 3 

registers). 



2. Further research in the cryptanalysis area, PSOCS can treated to be 

suitable to attack other complicated cryptosystems such as 

knapsack cipher and block cipher.  

3. To improve the performance of PSO, we suggest making a hybrid 

between this algorithm and other soft computing algorithms (e.g. 

simulated annealing or decent algorithm). 

4. Some improved can be done in the main evolving equations of 

velocity or position of particles of PSO to improve the attack 

achievement. 
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 هستخلص

ركبء انسشة طشٚق يبخكش نحم انًشكلاث انصعبت انحقٛقٛت ْٔٙ يسخٕحبة يٍ انسهٕك 

 ٕاَبث ٔانحششاث يزم انطٕٛس ٔالاسًبك ٔانًُم ٔانُحم .. انخ.ٛٔانخُظٛى الاجخًبعٙ نًجخًع انح

( ْٙ خٕاسصيٛت يزبنٛت ححبكٙ سهٕك سشة يٍ انطٕٛس PSOاٌ ايزهٛت انسشة انجضٚئٙ )

سهٕك انسشة ٚخًزم بعذد يٍ الاجسبو )طٕٛس أ اسًبك( فٙ فضبء يخعذد الابعبد  أ الاسًبك. اٌ

 ٔنّ خبصخٍٛ: انًٕقع ٔانسشعت.

اعخبش انخشفٛش الاَسٛببٙ يٍ اْى فئبث خٕاسصيٛبث انخشفٛش. نقذ اسخخذيج يخخببعبث 

انًسجم انضاحف بشكم ٔاسع فٙ كم يٍ عهى انخشفٛش َٔظشٚت انخشيٛض. ُْٔبك اسبط سٚبضٙ 

انعًم فٙ انخشفٛش اسبط ٚش عٍ انخشفٛش الاَسٛببٙ انًعخًذ عهٗ انًسجم انضاحف، ٔكبٌ ْٕ غض

 نلاغشاض انعسكشٚت كَّٕ الاسبط فٙ الاحصبلاث الانكخشَٔٛت.

نخحهٛم َظى  PSOسًٙ َظبو  PSOْذف انبحذ ْٕ حُفٛز َظبو ححهٛم شفش٘ ببسخخذاو 

اسهٕة انًٓبجًت ببنُص انٕاضح  ( ببلاعخًبد عهٗ انكهًت انًحخًهت فPSOCSٙانخشفٛش )

ٔببسخخذاد رلاد حبلاث دساسٛت ْٙ: يسجم صاحف يُفشد ببعخببسِ انٕحذة الاسبسٛت نُظى انخشفٛش 

ببعخببسِ يٕنذ غٛش  (Thresholdٚعخًذ دانت انعخبت )الاَسٛببٙ، انًٕنذ انخطٙ ببلاضبفت انٗ يٕنذ 

( نهًسجلاث SLEو انًعبدلاث انخطٛت )خطٙ، حٛذ ٚقٕو َظبو انخحهٛم ٚبٚجبد انحم انحقٛقٙ نُظب

 انضاحفت انًشبسكت فٙ انًُظٕيت ٔلا٘ عذد يٍ انًخغٛشاث.

ٚخًزم بًشحهخٍٛ، الأنٗ حخضًٍ بُبء َظبو انًعبدلاث انخطٛت  PSOCSاٌ حُفٛز 

نهًسجلاث انضاحفت انخبصت ببنحبنت انذساسٛت، ٔانزبَٛت حًزم يٓبجًت انًخغٛشاث انخبصت ببنُظبو 

SLE ًزم انقٛى الابخذائٛت نهًسجلاث انضاحفت. ْزا انبحذ ٚظٓش يذٖ كفبءة ٔاَجبصٚت ٔانخٙ ح

PSOCS .فٙ اٚجبد انقٛى الابخذائٛت نهًسجلاث انضاحفت 

َخبئج ْزا انبحذ حى انحصٕل عهٛٓب يٍ خلال بشايج يعذة ببسخخذاو نغت دنفٙ يٍ انجٛم 

 انعبشش ٔببلاسخفبدة يٍ ٔسبئم انبشيجت انًشئٛت نٓزِ انهغت.

 

 

 

 

 

 

 

 

 

 



                                 جوهىرٌت العزاق       

      

 وسارة التعلٍن العالً والبحث العلوً

 جاهعت بغذاد         

 ت العلىمـكلٍ         

 

 

استخذام السزب الذكً فً تحلٍل 

الاًظوت الغٍز خطٍت فً ًظن التشفٍز 

 الاًسٍابً
 

 رسالت
 ذادجاهعت بغ –كلٍت العلىم  هقذهت إلى 

 تطبٍقٍتالفً علىم الزٌاضٍاث الواجستٍز وهً جشء هي هتطلباث ًٍل درجت 
 

 

 هي قبل

 

 فاتي عبذ الزحوي حوٍذ
 

 

 اشزاف

 أ.م.د اٌاد غاسي ًاصز الشوزي
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